

Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

UAS Integration in the NAS Human Systems Integration Overview

2nd Workshop on Human-Automation Interaction Considerations for UAS Integration

Conrad Rorie Human Systems Integration

16 May 2018

UAS INTEGRATION IN THE NAS

- Multiple human-in-the-loop (HITL) simulations were performed to identify requirements for UAS DAA systems. The following metrics were used to assess pilot and system performance:
 - Pilot response times
 - Proportion of losses of DAA well clear
 - Severity of losses of DAA well clear
 - ATC interoperability
 - Subjective assessment & workload

Pilot-Air Traffic Control Interaction Timeline & Metrics

Symbol	Name	Pilot Action	DAA Well Clear Criteria	Time to Loss of DAA Well Clear	Aural Alert Verbiage
	Warning Alert	 Notify ATC as soon as practicable after taking action 	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 450 ft modTau = 35 sec	25 sec	"Traffic, Maneuver Now" x2
	Corrective Alert	 Coordinate with ATC to determine an appropriate maneuver 	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 450 ft modTau = 35 sec	55 sec	"Traffic, Avoid"
	Preventive Alert	 On current course, corrective action should not be required 	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 700 ft modTau = 35 sec	55 sec	"Traffic, Monitor"
	Guidance Traffic	 Traffic generating guidance bands outside of current course 	Associated w/ bands outside current course	х	N/A
4	Remaining Traffic	Traffic within sensor range	Within surveillance field of regard	Х	N/A

Phase 1 DAA Suggestive Maneuver Guidance

Altitude Tape

- Focus on development of technologies and standards for enabling a broader range of UAS types and operations
 - Smaller UAS (e.g., Scan Eagles, Shadow)
 - Approach and departure operations at towered and non-towered airports
 - Automation considered an *optional* equipage
 - Phase 1 assumed a pilot-in-the-loop at all times
- DAA alerting and guidance will have to take into account new types of operations, such as:
 - Low cost, size, weight, and power airborne surveillance for detecting and tracking non-cooperative aircraft
 - DAA well clear definition for smaller UAS and terminal operations
 - ACAS Xu performing both 'remain well clear' and collision avoidance functions
 - Automation/Autonomy
 - Auto-Collision Avoidance (Auto-CA)
 - Multi-UAS control

- Multi UAS Control Human-in-the-Loop (HITL) Simulation
 - <u>When</u>: June 2018
 - <u>Goal</u>: investigate the effect of multi-UAS, single-operator control on pilots' ability to maintain DAA well clear while flying in Class E airspace
 - Experimental Design:
 - Independent Variable number of UAVs under single-operator control (1:1, 1:3, 1:5)
 - Primary Task work through a 'mission deck' and other high-priority, high-workload sensor tasks
 - *Scripted Encounters* conflicts will be designed to occur with UAS, varying by:
 - Whether the UAS is under "focus" in multi-UAS conditions, the pilot can only focus on one UA at a time
 - Single vs. multi-threat encounter in multi-UAS conditions, simultaneous conflict with 2 different UA's
 - <u>Automation Considerations</u>: this HITL is **not** incorporating any automationrelated tools (e.g., auto-CA/RTC), however:
 - Pilot debriefs & questionnaires will elicit feedback on ways to facilitate both 1:N and M:N UAS control
 - A follow-on engineering analysis will present pilots with multi-UAS control and sharing capabilities (i.e., M:N)
 - Can incorporate architectures/concepts identified in this workshop

• Current M:N design

• Screenshots of sensor task (metaVR)

- Automatic Execution of Collision Avoidance & Return to Course Engineering Analysis
 - <u>When</u>: January 2019
 - <u>Goal</u>: implement and evaluate candidate architectures & HMI display concepts for auto-Collision Avoidance (CA) & Return-to-Course (RTC)
 - <u>Task 1</u>: *Regulatory Review* an analysis of existing civil and military (U.S. and international) regulatory requirements and guidance addressing humanautomation interaction with auto-pilots and other cockpit systems
 - <u>Task 2</u>: Automation Workshop HF experts collaborate to identify potential human-automation architectures and HMI designs
 - <u>Task 3</u>: Engineering Analysis four pilots will come in and fly select scenarios designed to scenarios and concepts identified by regulatory review and automation workshop
 - HMI concepts will be integrated into Vigilant Spirit Control Station
 - <u>Automation Considerations</u>: mode awareness, transparency, overreliance

• ACAS Xu – HITL Simulation

- <u>When</u>: April 2019
- <u>Goal</u>: implement and evaluate presentation of ACAS Xu alerting and guidance; namely the presentation of horizontal Resolution Advisories and blended maneuvers
- <u>Automation Considerations</u>: this HITL may incorporate the optional auto-CA/RTC functionality that ACAS Xu is able to support

• Multi-UAS Control 2 – HITL Simulation

- When: August 2019 (tentative)
- <u>Goal</u>: investigate multi-UAS control with emphasis on display concepts that facilitate M:N operations
- <u>Automation Considerations</u>: auto-CA/RTC will be implemented to support larger number of UAS; tools to allow pilots to hand-off control with safely and efficiently
 - Integrate 'playbook' type solutions to multi-UAS & DAA environment

Workshop goals:

- Apply expertise to address *specific* human-automation interaction use cases
- Identify research gaps
 - Prioritize areas in need of further study
 - Identify people/orgs that may be able to address open items in near term
- Produce ideas and concepts that can drive upcoming work at NASA and SARP
 - NASA's upcoming studies can leverage architectures and HMI designs identified here
 - Multi UAS engineering analysis AUG 2018
 - Auto-CA/RTC engineering analysis in JAN 2019
 - M:N HITL in AUG 2019
 - SARP can apply lessons learned from the workshop to their forthcoming Multi-UAS CONOPS

• Breakout group deliverables:

- High-level 'architecture' for each use case
 - I.e., what are the human & automation roles and responsibilities?
 - How can the human-automation architecture be designed to support coordination/synchronization?
 - Functional allocation diagram e.g., pictures of the white board/power point slide(s)
- HMI design concepts
 - Mock up or detailed description of proposed HMI design concepts
 - List of display, control, and automation features
- List of critical challenges that must be resolved in near-term

Breakout Group 1	Breakout Group 2	
Facilitator 1: Scott Scheff Facilitator 2: Jay Shively	<i>Facilitator 1</i> : Kim Vu <i>Facilitator 2</i> : Ted Lester	
Ellen Bass	Emilie Roth	
Sherry Chappell	Michelle Yeh	
Chris Miller	Maria Kuffner	
Alex Kirlik	Joe Boyd	
Ferne Friedman-Berg	Joe Lyons	
Sean Calhoun	Mike Rayo	
Asher Balkin	Adam Hendrickson	
Jay Shively	Conrad Rorie	
Jacob Kay	Sarah Strahan	

• Need early buy-in from ATC/NATCA