

- Drop size distributions (DSD; D_m , N_w) are critical to GPM DPR-based rainfall retrievals.
- Examine physical consistency between GV, algorithms, and within and between algorithms.
- Comparisons with GV suggest DPR D_m bias in convective rain is correlated to underestimation of rain rate. What is the source? • Light rain/small DSDs are a challenge: Should a generalized gamma (GG) approach be used to model the full DSD spectrum?

radar retrieval equations

Above: Positive bias in convective D_m (top) increases with $D_m > 2 \text{ mm}$ (red-dash line). N_{w} (bottom) inconsistent across algorithms, over-compensates negative bias in KuPR D_m.

Convective Z below ML similar to GV regardless of D_m; Convective Z increases aloft with large D_m

xels of graupel/hail, more intra-footprint variability in Z above/below M 4 levels above BB, N=19849 3 levels above BB + 2, N=5752 levels above BB, N=19848 levels above BB + 2, N=575 1.0 < D_m < 2.5 **HID Types**

HID has enhanced ice-phase in convection with large D_m- makes sense, but also more intra pixel variability in Z (above ML- shown, and below- not shown)

Large D_m issue a possible symptom of NUBF (PIA correction)?

GPM DSD retrievals exhibit inconsistencies between GV, DPR and Combined algorithm retrievals. Development of positive bias in convective D_m rain DSD noted, and strongest in KuPR retrievals. Development of positive bias in convective D_m rain DSD noted, and strongest in KuPR retrievals. in markedly reduced convective rain rates (a current issue in the PSD not withstanding, on the small end of the DSD, combined MPS and 2DVD measurements fit with generalized gamma functions exhibit strong potential for representing the entire spectrum of the DSD and subsequently the whole rain rate spectrum.

Observing the Full Spectrum of the Rain Drop Size Distribution Walt Petersen(1*), Merhala Thurai(2), Patrick Gatlin(1), Ali Tokay(3), David Wolff(5), Leo Pio D'Adderio(5), David Marks(6) (1)NASA MSFC, (2)Colorado State University, (3)UMBC/GSFC, (4)NASA GSFC/WFF, (5) ISAC-CNR, (6)SSAI/GSFC-WFF

*Contact: walt.petersen@nasa.gov

Objective: Verify and Improve GPM Drop Size Distribution Retrievals

2D Video Disdrometer (2DVD) measurements in a multitude of regimes translated to dual-pol DSD and moments

KuPR Z-corrected "big" D_m (right)

Impact: ϵ is key to PIA correction and like an N_{w} ; If too low, underestimation of convective rain rates when D_m is too large

Acknowledgements: NASA PMM and GPM Program funding; NASA GV Team. Prof. K. Knupp, UAH for access to XPR data.