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Test as we Fly nor Fly as we Test ?

“‘Test as you fly’ is a worthy goal. But if not quite a myth,
it is at least ‘a custom more honoured in the breach...’ “

“ Better to do many imperfect tests early and understand,
than to attempt a ‘perfect’ test, as it never actually will be

({4

SO.

..... by Ralph Lorenz.

(From his presentation on “Test-as-you-fly” environments
for planetary missions, IPPW-2018)

Can advances in multi-scale modelling and physics based
simulation redefine “test” as we fly?




Background on Planetary Protection
Requirements and the Grand Challenge

= NASA Policy Directive 8020.7G requires compliance with 1967 UN
Treaty on Outer Space Article IX, which states:

» Sample return from Mars and other water worlds: Category V

» “Restricted Earth Return”

* Highest degree of concern is expressed by the “Absolute prohibition of
destructive impact upon return, the need for containment throughout

the return phase ...

* Both ESA and NASA have defined design guidelines for mission studies in
the past and these guidelines are evolving.

» Score card for less restrictive Sample Return Missions:

* 2 successful (Stardust and Hayabusa) and 1 unsuccessful (Genesis)

MSR Earth Entry Vehicle (and the TPS) need to be
extremely robust against all possible failure modes




MSR Demands a New Approach

= Reliability requirements for MSR demand a new approach

> Risk-based design, accounting also for common cause/mode failures, drives
redundancy and diversity of system design [1]

» Perform studies with reliability as primary metric
» Allocation of functions to subsystems

e TPS role in MMOD protection and landing impact attenuation
» Dissimilar redundant capability

» TPS typically exempted from redundancy requirements:
* Design for Minimum Risk

* Re-visit creative options for secondary TPS

* Account for consequence of primary failure on secondary load environment
» Safety features

» Detect incipient failure
* Sacrifice some science return to assure planetary protection

[1] Conley, Catharine A., and Gerhard Kminek, "Planetary Protection for Mars Sample Return." ESA/NASA, April 29 (2013).



Potential Mars Sample Return - Notional Architecture@
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Launch Year 1

N
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Earth Return

Launch in 2026 - SRL and (ERO with EEV) missions
ESA-NASA collaboration
* Mission Architecture and design(s) need to be technically robust.

* Need to be tolerant to programmatic, schedule and budget constraints.
* This is what makes MSR - EEV a grand challenge and an opprotunity.

Contained samples
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Current MSR EEV Concepts Under Consideration @

Cold Structure EEV Concept

PICA will need to be single piece
(like Stardust but much bigger
HEEET — Tiled with seams

* Tested at much higher conditions
Other 3-D Woven could be single
piece

* Need further development

Many different forms of Carbon-

Carbons

* 2-Dand 3-D or combination

* Single or multi-piece

* DoD experience base ( + and -)
Hot-structure construct

* Design, Manufacturing, integration

and certification challenges

Design concepts have to be robust against
MMOD, entry and ground impact and be mass efficient
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State of the Art: System and TPS Reliability N@,

* Waiver required for EFT-1 test flight, due to negative structural margins against

cracking of Avcoat ablator (Vander Kam, Gage)
*  PRA estimate for structural failure due to TPS bond-line over temperature ~1/160,000 (6.25e-6)
Orion Crew Vehicle Reliability allocations

Orion Post- PDR

Requirement: Loss of Crew  1/290 1/200

TPS Allocation 1/5600 1/2100

From: (AIAA 2011-422)
» Shuttle Analysis of data from successful flights (did not include consideration of off-nominal

TPS states) estimated TPS reliability of 0.999999 ( or failure < 1.0x10°)
— Columbia accident highlighted need for consideration of damage due to debris impact
* Robotic missions (No known mission failures due to TPS failure) (most not instrumented)
— Recession data for Galileo indicated near failure at shoulder
— MSL identified shear-induced failure mode for SLA during ground test campaign — switch to PICA

— Root cause of Mars DS2 failure unknown, but entry failure deemed unlikely

* Need comprehensive hazard analysis
* Assess likelihood and consequence for each hazard

* Need robust performance margins for all failure modes
* Ground test to failure to establish performance limits




State of the Art:
TPS and Thermo-Structural Modeling

Reliable As Primary Design Input Must be Obtained Via Test
= 1D thermal sizing* * Singularities (e.g. cut-outs, windows,
= Multi-dimensional conduction*® closeouts, seals)

Must be Augmented Via Test * Failure modes

* Off-nominal performance (damage)

Tiled systems / gap performance

* Thermo-structural performance * Reliability assessment

= Margin assessment ° Materials design

*once models have been calibrated with arc jet data for conditions and materials of relevance

Design | | Development Testing | | Manufacturing | | Integration | | Flight Certification
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Do we know how to do (thermal) margin?

= A TPS system is designed (margined) to a given reliability
» In other words, it must be robust to off-nominal conditions
> Thickness margin is typically applied as one reliability factor

» Thickness margin is evaluated by evaluating uncertainties in
environments and material performance and tracking their influence
on design metrics of interest (e.g. bondline temperature)

» @Goal is a full Monte-Carlo process, but we are not there yet
» Margin assessment is currently reliant on statistical performance data (Arc Jet testing)
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Understanding the Features
From TPS Material to Integrated System

Orion EM1 5.0 m Heat-shield (block Avcoat, RTV HEEET 1m Engineering Test Unit (ETU)
gap filler, Compression Pad, Instrumented Plugs)

MSR EEV ?
Larger than Stardust
(smaller than Orion)

entry at (~ 13.5 km/s)
Ballistic entry
MMOD Impact
Chuteless
Impact Landing

Stardust single piece, seamless heatshield
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Needed: Characterization of TPS -
Features, Flaws and Failure

= Acreage
» Through Thickness cracks causing “heat leaks”

» In plane cracks causing reduced thickness
» Surface erosion TTT crack Wola

* Mechanical failure causing spallation or accelerated layer loss
* Melt flow

» Flow through (permeability permits interior flow)

Structural Aero/Material

» Loss of attachment of tiles or gap fillers, causing complete loss i
of thermal material over a large area

» Adhesive mechanical failure
» Substrate failure adjacent to adhesive
» Adhesive thermal failure

= Cracking and opening of seams, permitting a “heat leak” in the
gaps between tiles

» Adhesive mechanical failure
 Tile failure adjacent to adhesive
» Adhesive char and erosion

= Material response prediction error
» Recession rate error
» Differential recession at seam

» Conduction
8/30/17




Missions and Induced Features and Flaws

" Launch to Landing
» Launch,
» deep space cold soak,
» micro-meteor and orbital debris,
» entry and
» landing

0 3 3] 0 e

Physics-based impact and hole growth tools needed to
assess the MMOD risk




Unique Challenge for MSR EEV

» Human missions certification is via ground and flight tests (Orion as well
as Commercial Crew) combined with simulation

= MSR EEV demands a different approach

» Robustness requirement is more stringent than human missions
» Launch by 2026 time-line does not allow for flight test

Rethinking our approach —

» Design from the perspective of certification

» Will require understanding features that become flaws and flaws that lead to
failure. Can we design these features that lead to failure? Can we introduce
features that prevent failure?

= Certification through modeling and simulation anchored to tailored tests

» Physics based multi-scale modeling and simulation tools anchored to relevant test
data.

= A great opportunity for Multi-scale integrated modeling approach

TPS certification will be the biggest challenge
as well as the opportunity
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Questions?
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