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The Planetary Science Division of the NASA Science Mission Directorate funded a study from October 2017 — June 2018, involving 4 NASA
Centers (ARC, GSFC, JPL, and LaRC), to address if a common aeroshell design could be utilized at multiple destinations instead of optimizing
a design for a specific mission. If this common design were built with several copies, what efficiencies and risks would be involved?
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Study Scope and
Venus, Jupiter, Saturn, Uranus, and Neptune considered as destinations
Atmospheric probe missions (no large landers at Venus)
Carrier Spacecraft provides power and telecommunications (details not
studied)
Details of science instrumentation and descent vehicle not studied
Leverage previous mission designs and high-fidelity analysis; use mid-

fidelity tools for design estimates

Forebody TPS
J PICA (Phenolic Impregnated

Carbon Ablator)
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Risks and Effici
/Typically, probes are designed and optimized based on specific mission needs. \
Building a probe once a decade has sustainability issues
- Maintaining heritage material availability (e.g., precursor and constituents to carbon phenolic)
— Skilled labor for assembly and integration (HEEET requires use of gap fillers and specially-developed
integration techniques)
+ Building multiple copies of a common design can alleviate the sustainability issues, but introduces new risks:
- Long term storage and aging of the system

y and Future Work

* A common atmospheric probe design for Venus, Saturn, Uranus, and Neptune
missions is feasible

Missions to Jupiter should be considered separately due to out-of-family heat loads
Follow-on activities are recommended:

- Should a smaller descent module and aeroshell be studied?
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« WIll HEEET and a cyanate ester composite structure age at the same rate when bonded together?
+ Can accelerated aging coupon tests be performed?
« Galileo and Phoenix are data points for ground storage
- Qualification of the design across multiple destinations
Preliminary costing which estimates the non-recurring vs recurring engineering portions indicates that cost
savings could be realized by building multiple units at the same time

J

- Higher fidelity tools (CFD, structural analysis, etc) for better mass estimates
- Better cost estimates

Final report is in progress, will be submitted to PSD

» Community feedback is desired—what other activities are desired by mission

weygners’? j
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A Common Probe Design for Multiple Planetary
Destinations
Helen H. Hwang
NASA Ames Research Center

Is it possible to “disrupt” the atmospheric probe mission design
paradigm by designing and building an aeroshell that could be flown at
Venus, Jupiter, Saturn, Uranus, and Neptune? Come find out!
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