

Design and Development of Advanced Air-Cathodes for Li-Air Battery

Dr. James J. Wu Photovoltaic and Electrochemical Systems Branch, Power Division NASA Glenn Research Center

> Presentation at AiMES 2018 Meeting Cancun, Mexico September 30 – October 4, 2018

- Introduction/NASA Energy Requirements
- Challenges for Li-Air Battery & Air-Cathode Development
- Design Parameters for Air-Cathode
- Result Summary
- Next Steps/Future Direction

- Batteries provide:
 - a versatile, reliable, safe and portable energy source, and are an essential component of the power system of virtually all NASA missions
 - energy storage, serve as a power source such as during eclipses, and can provide peaking power, which are important electrical energy storage options for NASA space missions

- Safe
- High in specific energy
- Light in weight
- Compact in volume
- Long in shelf life

- Durable in wide temperature ranges and harsh environments
- Reliable in meeting mission requirements

State-of-Art (SOA) Li-Ion Battery (LIB)

- LIB Specs:
 - Specific energy: 180-200 Wh/kg
 - Specific power: 300 W/kg
 - Temp range: -20°C to 60°C
 - Excellent rechargeability: (1000s cycles)

• Limitations:

- Anode: Graphite Cathode: LiCoO₂ Electrolyte: Li salt in organic carbonate
- Maximum of specific energy <250 Wh/kg
- Flammable electrolyte and fire hazards

NASA Demands Very High Specific Energy Batteries

- Hybrid / All-electric aircraft Limited by mass of energy storage system
- Commercial aviation Safe, reliable, lightweight on-board electric auxiliary power unit

Extravehicular Activities (Spacesuit power)

>400 Wh/kg

Required to enable untethered EVA missions lasting 8 hours within strict mass and volume limitations.

Astronaut life support Safety and reliability are critical 100 cycles

Landers and Rovers, Robotic missions, Inspace habitats

>500 Wh/kg

Batteries are expected to provide sufficient power for life support and communications systems, and tools including video and lighting

>100 cycles

NASA future mission requirements far exceed the capabilities of SOA Li-ion chemistries

> Progress in these areas requires advances in safe, very high energy batteries

Advanced Safe, High Energy Batteries

- Improve Li-ion specific energy and safety
 - Advanced electrode materials development such as:
 - Si anode
 - NMC cathode
 - non-flammable additives in electrolyte
 - under NASA Advanced Space Power System (ASPS) project (2009-2014) and under NASA Advanced Energy Storage Systems (AESS) project (2014-2017)
- Beyond Li-ion battery chemistries development
 - NASA Center Innovative Fund (CIF)
 - Independent Research and Development (IRAD)
 - Convergent Aeronautics Solutions (CAS)
 - NASA SBIR/STTR Program

- Battery chemistries with very high theoretical specific energy:
 - Li/S Battery Chemistry: 2680 Wh/kg
 - Metal-Air Battery chemistries, e.g. Li/O₂: 5200 Wh/kg
- These high theoretical capacity battery chemistries have the potential to meet NASA's energy goal of >400 Wh/kg

- Complex discharge intermediates/ products: LiO₂, Li₂O₂, Li₂O
 - High overpotential during charge causing electrolyte decomposition
 - low cycle life
- Low kinetics: poor rate capability
- air cathode is "open" to environmental
 - environment e.g. CO₂, humidity, air flow, temperature impact the battery performance
- Safety, Li dendrite growth
- Air cathode and electrolyte development critical for Li-O₂ battery

Air-Cathode Design

Requirement for the air-cathode:

- Permeable to air/O₂ porous substrate
- High catalytic reaction:
 - oxygen reduction reaction (ORR)
 - oxygen evaluation reaction (OER)

Substrates

- porous with adequate mechanical strength
- good electronic conductivity
- stable chemically to electrolyte an discharge intermediate/products
- Stable at wider electrochemical window
- Plus if the substrate has catalytical activity to O₂

Active materials of cathode

- High surface, high porosity and high catalytical activity to O₂
- Stable chemically and at wider electrochemical window

Air-Cathode Development

- Different substrates
 - 2D carbon: (carbon paper/cloth), 2D metal mesh (Ti, Pt/Ti)
 - 3D graphene, 3D Ni foam. 3D Ni foam with CVD multilayer 3D graphene
- Different carbon as active materials
 - Super P
 - KetjinBlack (KB) carbon

• Catalyst in cathode

- Metal oxide
- Nobel metal

• Porosity of Ni Foam Substrate

- Different porosity
- Additive in electrolyte

Different Substrate Study

3D Graphene/3D Ni foam

2D Ti mesh

Cyclic Voltammetry of Super P on Different Substrates

- Platinized Ti mesh is better than Ti mesh w/o Pt treatment
- 3D Ni foam is better than 2D carbon/metal mesh
- Ketjin Black carbon is better than super P carbon
- 3D Ni foam and Ketjin Black are selected as cathode material

Porosity Impact

75 mA/g

Ni foam pore size: 450 um

Ni foam pore size: 680 um

Cycling Performance at Different Cut-off Voltage

Current: 450 mA/g

4.3V – 2.4V

4.3V - 2.0V

- KetjenBlack carbon on 3D Ni foam
- Loading: 3.2 mg/cm²
- Current density (mA/g): 150 →300 →450 →300 →150 150mA/g ---→0.47 mA/cm² 300mA/g ---→0.95 mA/cm² 450 mA/g --→ 1.42 mA/cm²
- 4.3V 2.4V
- Discharge: 1 hr or 2.4V
- High purity air (water <1 ppm in total contamination) environment

150 mA/g: Before and After Rate Capability Cycling

150 mA/g, initial

150mA/g, After 300, 450, 300 mA/g

0.00000

0

2

6

8

10

Δ

300 mA/g: Before and After Rate Capability Cycling

		Ketjen Carbon B	lack on Ni foam	ı	
Loading: 4 mg/cm2		Discharge Condition	Discharge Time	W/kg	Wh/kg
Rate			(minutes)	vs. electrode coating	vs. electrode coating
mA/g	mA/cm2	1 hour or 2.4V			
150	0.47		60	401	401
300	0.95		18.2	815	247
450	1.42		5.2	1317	114
		Commercial <i>J</i>	Air Cathodes		
CeTech (8 mg/cm2)	0.5	1 hour or <mark>2.4</mark> V	12	45	9
	1		0.55	99	0.9
	1.5				
Elat (6 mg/cm2)	0.5	1 hour or <mark>2.4</mark> V	26	51	22
	1		1.8	106	3.2
	1.5				

- The factors such as substrate type, carbon materials, porosity and discharge cut-off voltage impact air-cathode cycling performance
- Kenjet black carbon on 3D Ni foam substrate demonstrated excellent cycling performance and rate capability
- Current under Investigation/Next Steps:
 - Catalyst
 - Electrolyte with additive

- Bill Bennett (NASA/GRC), Fred Dynys (NASA/GRC) Donald Dornbusch (NASA/GRC & Case Western Reserve University)
- LiON project funded under NASA Convergent Aeronautics Solutions (CAS) Program

Thank you!

Any Questions?