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Motivation

Differences in large-scale tropospheric transport among models
contribute to differences in aerosol distributions in the Arctic and
to the interhnemispheric gradients of GHGs and ODSs (e.g. Shindell

et al. (2008), Patra et al. (2011), Monks et al. (2015)).

It Is not clear, however, whether these uncertainties are driven by
large-scale flow biases and/or subgrid-scale processes.

Few studies have examined how tropospheric transport (e.g.
transport to the Arctic, interhemispheric exchange) will change in a
warmer climate (e.g. Holzer and Boer (2001), Doherty et al.

(2017)).
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Motivation

The Chemistry Climate Modeling (CCM) Initiative experiments (Eyring et
al. (2013)) provide a unique opportunity to examine the relationship
between tropospheric transport and large-scale dynamics because:

Unprecedented number of tropospheric transport diagnostics,
including a range of both idealized loss and age tracers (Waugh et al.
(2013), Eyring et al. (2013), Orbe et al. (2016,2017))

Large number of models submitting both “specified-dynamics” and
free-running simulations using the same underlying model code

Much more dynamical output, relative to previous composition
intercomparisons (e.g. TRANSCOM, ACCMIP).
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Motivation

Here we use the Chemistry Climate Modeling (CCM) Initiative experiments
(Eyring et al. (2013)), consisting of hindcast simulations over the recent past,

performed both in “specified-dynamics” (REF-C15D) and free-running (REF-
C1) modes to evaluate:

#1 What is the spread in tropospheric transport among CCMs and how is

that related to differences in large-scale dynamics and/or (parameterized)
convection?

#2 Is tropospheric transport better constrained in specified-dynamics
(SD)(versus free-running (FR)) simulations?
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Motivation

Here we use the Chemistry Climate Modeling (CCM) Initiative experiments

(Eyring et al. (2013)), consisting of hindcast simulations over the recent past,
performed both in “specified-dynamics” (REF-C15D) and free-running (REF-
C1) modes, and future (REF-C2) simulations to examine more systematically:

#1 What is the spread in tropospheric transport among CCMs and how is

that related to differences in large-scale dynamics and/or (parameterized)
convection?

#2 Is tropospheric transport better constrained in specified-dynamics
(SD)(versus free-running (FR)) simulations?

#3 How is transport to the Arctic and interhemispheric transport
projected to change by the end of the 21° century?
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Methods

A. Experiments:

REF-C1SD (1980-2010): observed SSTs and SICs, analysis large-scale flow
REF-C1 (1960-2010): observed SSTs and SICs, free-running
REF-C2 (1960-2100): modeled SSTs and SICs, free-running, RCP 6.5 scenario

B. Transport DiagnOS’[iCS: NH Midlatitude 5-Day
Loss Tracer
Tropospheric transport is inferred from 100 e
idealized loss tracers with a NH midlatitude
source (x5 and Xs50) as well as a NH —
midlatitude mean age tracer (I'nu)
(Waugh et al. (2013), Eyring et al. (2013),
Orbe et al. (2016,2017)).
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Methods

A. Experiments:

REF-C1SD (1980-2010): observed SSTs and SICs, analysis large-scale flow
REF-C1 (1960-2010): observed SSTs and SICs, free-running
REF-C2 (1960-2100): modeled SSTs and SICs, free-running, RCP 6.5 scenario

B. Transport Diagnostics:

Tropospheric transport is inferred from
iIdealized loss tracers with a NH midlatitude
source (x5 and X50) as well as a NH
midlatitude mean age tracer (I'nu)
(Waugh et al. (2013), Eyring et al. (2013),
Orbe et al. (2016,2017)).

pressure [hPal
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Methods

A. Experiments:

REF-C1SD (1980-2010): observed SSTs and SICs, analysis large-scale flow
REF-C1 (1960-2010): observed SSTs and SICs, free-running
REF-C2 (1960-2100): modeled SSTs and SICs, free-running, RCP 6.5 scenario

B. Transport Diagnostics: NH Midlatitude
Mean Age

Tropospheric transport is inferred from 100
idealized loss tracers with a NH midlatitude 0
source (x5 and X50) as well as a NH
midlatitude mean age tracer (I'nu)
(Waugh et al. (2013), Eyring et al. (2013),
Orbe et al. (2016,2017)). 700
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Methods

A. Experiments:

REF-C1SD (1980-2010): observed SSTs and SICs, analysis large-scale flow
REF-C1 (1960-2010): observed SSTs and SICs, free-running
REF-C2 (1960-2100): modeled SSTs and SICs, free-running, RCP 6.5 scenario

B. Transport Diagnostics:

In addition to examining tracers with zonally
invariant sources (X5 ,Xs50, ['ng ) we will also
examine more realistic tracers with only land
(CO-like) emissions ( Xcos50 ) (Shindell et al.
(2008), Monks et al. (2015), Doherty et al.
(2017),Yang et al. (2018, Under Review)).
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Models: Hindcast

-Xperiment

Simulation Model Horizontal Vertical Levels Large-Scale Flow Convective

Name (Reference) Resolution (Model Top) (Free/Nudging/CTM) Parameterization

GEOS-CTM NASA Global Modeling Initiative Chemical Transport Model 20 x25° 72 (0.01 hPa) MERRA (CTM) Moorthi and Suarez (1992)
Strahan et al., (2013) Bacmeister et al. (2006)

GEOS-C1SD Goddard Earth Observing System Version 5 GCM " " MERRA (Nudging) "
Reinecker et al. (2007); Molod et al. (2015)

GEOS-C1 " " " Free-running "

WACCM-C1SDV1/V2 Whole Atmosphere Community Climate Model Version 4 (WACCM-4) 1.9° x25° 88 (140 km) MERRA (Nudging) Hack (1994) (shallow)
Marsh et al. (2013); Solomon et al. (2015); Garcia et al. (2016) Zhang and MacFarlane (1995) (deep)

WACCM-C1 " " " Free-running

CAM-C1SD Community Atmosphere Model Version 4 (CAM4)-Chem 1.9° x2.5° 56 (1 Pa) MERRA (Nudging)
Tilmes et al. (2015)

CAM-C1 " " " Free-running "

EMAC-1L47-C1 ECHAM/ Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) T42 47 (0.01 hPa) Free-running Tiedtke (1989); Nordeng (1994)
Jockel et al. (2010); Jockel et al. (2016)

EMAC-L47-C1SD " " " ERA-Interim (nudging)

EMAC-L90-C1 " " 90 (0.01 hPa) Free-running "

EMAC-L90-C1SD " " " ERA-Interim (nudging) "

MRI-C1SD Earth System Model MRI-ESM1r1 TL159 80 (0.01 hPa) JRA-55 (Nudging) Yoshimura et al. (2015)
Yukimoto et al. (2012, 2011); Deushi and Shibata (2011) " " "

MRI-C1 " " " Free-running "

CMAM-CI1SD Canadian Middle Atmosphere Model (CMAM) T47 71 (0.0008 hPa) ERA-Interim (Nudging) Zhang and McFarlane (1995)
Jonsson et al. (2004); Scinocca et al. (2008)

CMAM-C1 " " " Free-running "

NIWA-C1 National Institute of Water and Atmospheric Research UK Chemistry and Aerosols (NIWA-UKCA) 3.75° x2.5° 60 (84 km) Free-running Hewitt et al. (2011)
Morgenstern et al. (2009, 2013); Stone et al. (2016)

SOCOL-C1 Solar-Climate-Ozone Links (SOCOL) v3 T42 39 (0.01 hPa) Free-running Nordeng (1994)
Stenke et al. (2013); Revell et al. (2015)

NIES-C1SD CCSRNIES-MIROC3.2 T42 34 (0.01 hPa) ERA-Interim (Nudging) Arakawa and Schubert (1974)
Imai et al. (2013); Akiyoshi et al. (2016)

NIES-C1 " " " Free-running "

MOCAGE-CTM Modele de Chimie Atmosphérique de Grande Echelle (MOCAGE) 20 x2° 47 (5 hPa) ERA-Interim (CTM) Bechtold et al. (2001)
Josse et al. (2004); Guth et al. (2016)

ULAQ-C1 University of L’ Aquila (ULAQ)-CCM T21 126 (0.04 hPa) Free-running Grewe et al. (2001)
Pitari et al. (2014)

ACCESS-C1 National Institute of Water and Atmospheric Research UK Chemistry and Aerosols (NIWA-UKCA) 3.75° x2.5° 60 (84 km) Free-running Hewitt et al. (2011)

Morgenstern et al. (2009, 2013); Stone et al. (2016)

Among the hindcast runs (REF-C1, REF-C1SD) we consider 23 simulations,
performed in both specified-dynamics (= ===) and free-running (=) modes.
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Models:

—uture

—Xperiment

Simulation Model Horizontal Vertical Levels Large-Scale Flow Convective
Name (Reference) Resolution (Model Top) (Free/Nudging/CTM) Parameterization
GEOS-CTM NASA Global Modeling Initiative Chemical Transport Model 20 x2.5° 72 (0.01 hPa) MERRA (CTM) Moorthi and Suarez (1992)
Strahan et al., (2013) Bacmeister et al. (2006)
GEOS-C1SD Goddard Earth Observing System Version 5 GCM " " MERRA (Nudging) "
Reinecker et al. (2007); Molod et al. (2015)
" " " Free-running "
WACCM-C1SDV1/V2 Whole Atmosphere Community Climate Model Version 4 (WACCM-4) 1.9° x2.5° 88 (140 km) MERRA (Nudging) Hack (1994) (shallow)
Marsh et al. (2013); Solomon et al. (2015); Garcia et al. (2016) Zhang and MacFarlane (1995) (deep)
m " " " Free-running
CAM-CISD Community Atmosphere Model Version 4 (CAM4)-Chem 1.9° x2.5° 56 (1 Pa) MERRA (Nudging)
Tilmes et al. (2015)
CAM-C1 " " " Free-running "
ECHAM/ Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) T42 47 (0.01 hPa) Free-running Tiedtke (1989); Nordeng (1994)
Jockel et al. (2010); Jockel et al. (2016)
EMAC-L47-C1SD " " " ERA-Interim (nudging)
" " 90 (0.01 hPa) Free-running "
EMAC-L90-C1SD " " " ERA-Interim (nudging) "
MRI-C1SD Earth System Model MRI-ESM1r1 TL159 80 (0.01 hPa) JRA-55 (Nudging) Yoshimura et al. (2015)
Yukimoto et al. (2012, 2011); Deushi and Shibata (2011) " " "
" " " Free-running "
CMAM-CISD Canadian Middle Atmosphere Model (CMAM) T47 71 (0.0008 hPa) ERA-Interim (Nudging) Zhang and McFarlane (1995)
Jonsson et al. (2004); Scinocca et al. (2008)
L CMAM-C1 g " R R Free-running R
‘m National Institute of Water and Atmospheric Research UK Chemistry and Aerosols (NIWA-UKCA) 3.75° x2.5° 60 (84 km) Free-running Hewitt et al. (2011)
Morgenstern et al. (2009, 2013); Stone et al. (2016)
SOCOL-C1 Solar-Climate-Ozone Links (SOCOL) v3 T42 39 (0.01 hPa) Free-running Nordeng (1994)
Stenke et al. (2013); Revell et al. (2015)
NIES-C1SD CCSRNIES-MIROC3.2 T42 34 (0.01 hPa) ERA-Interim (Nudging) Arakawa and Schubert (1974)
Imai et al. (2013); Akiyoshi et al. (2016)
" " " Free-running "
MOCAGE-CTM Modele de Chimie Atmosphérique de Grande Echelle (MOCAGE) 20 x2° 47 (5 hPa) ERA-Interim (CTM) Bechtold et al. (2001)
Josse et al. (2004); Guth et al. (2016)
ULAQ-C1 University of L’ Aquila (ULAQ)-CCM T21 126 (0.04 hPa) Free-running Grewe et al. (2001)
Pitari et al. (2014)
National Institute of Water and Atmospheric Research UK Chemistry and Aerosols (NIWA-UKCA) 3.75° x2.5° 60 (84 km) Free-running Hewitt et al. (2011)

Morgenstern et al. (2009, 2013); Stone et al. (2016)

Among the future runs (REF-C2, RCP 6.5) we consider nine simulations that
iIntegrated the NH midlatitude idealized tracers.
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Models: Future Experiment

_— Hindcast

l. Transport to the Arctic
— Future

__— Hindcast
Il. Interhemispheric Transport

Future

National Institute of Water and Atmospheric Research UK Chemistry and Aerosols (NIWA-UKCA) 3.75° x2.5° 60 (84 km) Free-running Hewitt et al. (2011)
orgenstern et al. (2009, 2013); Stone et al. (2016

Among the future runs (REF-C2, RCP 6.5) we consider nine simulations that
iIntegrated the NH midlatitude idealized tracers.
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Transport to the Arctic

REF-C1SD

® Large (~30-40%) differences

€ 8 in transport over NH middle
§§ and high latitudes.
SIS

@ The differences among SD

simulations are as large

o = (and at places larger) than
S & the differences among FR
33, simulations.

(o] (o) (o]
EQ 30°N 60°N 90"N
- = = CEOS-CTM = m o= WACCM-CISDVI ==-===° CAM-C1SD = = = NIES-C1SD = m = MOCAGE-CTM == = m MR-CISD ~ =====- EMAC-L47-C1SD
B | W CFOS-CISD == | mm  WACCM-C1SDV2 CAM-C1 s NIES-C1 m——— ULAQ-C1 —— \|RI-C1 s EMAC-L90-C1
— GEOS-C1 WACCM-C1 NIWA-C1 SOCOL-C1 ACCESS-C1 EMAC-L47-C1 = = = EMAC-L90-C1SD

Orbe et al. (2018, ACP)
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Transport to the Arctic

REF-C1SD

© Similar differences

S g between SD and FR

S5, simulations are also

v exhibited by tracers with
only land emissions
(Xcos0) (Yang et al. (2018,
Under Review in ACPD)).

e g

So

S 2

(o] (o) (o]
EQ 30°N 60°N 90"N
- = = GEOS-CTM = m o= WACCM-CISDVI ==-===° CAM-C1SD = = = NIES-C1SD = m = MOCAGE-CTM == = m MR-CISD ~ =====- EMAC-L47-C1SD
B | W CFOS-CISD == | mm  WACCM-C1SDV2 CAM-C1 s NIES-C1 m——— ULAQ-C1 —— \|RI-C1 s EMAC-L90-C1

— GEOS-C1 WACCM-C1 NIWA-C1 SOCOL-C1 ACCESS-C1

Orbe et al. (2018, ACP)
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Transport to the Arctic

Land-Only Sources

#1 For tracers with land-only
emissions (Xeosg ), transport

Tracer vs. Hadley Cell Edge . .
! y J efficiency to the Arctic depends

28
*70°N- 90°N 11
— JTOM- 90 sensitively on the poleward edge of
o the Hadley Cell (Yang et al. (2018),
Q Under Review)
X -) 24
@)
=0
i =
QO Specified-Dynamics
2() B - . g G 0
26 N 28N 30N 32N 34N 36N
DJF élv—o [deg] @ Free-Running
@ ACCESS-C1 @® cMAM-C1 () CMAM-C1SD @® EMAC-L47-CH
(O EMAC-L47-C1SD EMAC-L90-C1 EMAC-L90-C1SD @ GEOS-C1
O GEOS-CT™M O GEOS-C1SD @ WACCM-CH1 O WACCM-C1SDV1
O WACCM-C1SDV2 @ CAM-CH O cAM-C1SD @ NIWA-C1
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Transport to the Arctic

Land and Ocean Sources #2 By comparison, tracers with both

ocean and land sources ( x2'F)

Tracggl\l’sé d';aed'ey Tracerl\h’zéggﬁ;ec“ve depend also on convection over
60 65 - oceans (Orbe et al. (2018), Yang et
B o ol =1c0 % al. (Under Review)) and less
Q' 55 Q Sw "o, ~ght * - : : : :
ER | FRE sensitively on midlatitude jet location
. 80 o N
38 50 5 : and/or Hadley Cell edge.
50 Ry
45 - - - 45—
26 N 30 N 34 N 0 1 2 3
DJF ¢lv=0 [de] DUF CMF [x10"kgmi/s] QO Specified-Dynamics
S Bt o150 b0t e o150 ® otoaer @ Free-Running
O GEOS-CT™M O GEOS-C1SD @ WACCM-C1 O WACCM-C1SDV1
O WACCM-C1SDV2 @ CAM-C1 O cAmM-C1SD @ NIWA-C1
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Transport to the Arctic

Land-Only Sources

Tracer vs. Hadley Cell Edge

[ppDb]

*
—DJF
XCO50

200 O )
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Note that the differences in Hadley
Cell edge among specified-
dynamics simulations (Q) are as
large as the differences among free-
running simulations (@). This is
somewhat surprising.




Transport to the Arctic

Maximum Surface Zonal
Winds at 850 hPa (UAS)

NH JJA

[degrees]
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o
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@ VERRA
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— @ -rrss
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Specified-Dynamics

This reflects the fact that, while the zonal winds are well constrained in
specified-dynamics simulations...
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Transport to the Arctic

Maximum Surface Zonal Streamfunction-based
Winds at 850 hPa (UAS) Hadley Cell Edge (PSI)
o NH JJA [degrees] ° NH JJA [degrees]
43N 45N
41°N
O 3¢ 2
2 39°N S o
c c
% 37°N D::;
o o ]
4 3°N % 35°N
G T
T @ VERRA
31°N 30°N
3°N 33°N 35N 37N 39°N 41°N 43°N 30N 35N 40°N 45°N
Specified-Dynamics Specified-Dynamics ‘ ERA-Interim
SH DJF [degrees] SH DJF [degrees]
28°S 30°S ' JRA-55
30°S .
o 32 cC» 32°s
C c
c  34°S c 34°s
% 36°S 03:
a d 36S
O 3gq o}
q) ~—
b L 38's
L 40°%
229 40°S
42°s 40°s 38°s 36° 34°s 32% 30°S 28°S 40°s  38°s 36S  38s 3P°s  30°s
Specified-Dynamics Specified-Dynamics

This reflects the fact that, while the zonal winds are well constrained in
specified-dynamics simulations, the meridional and vertical component of the
flow is not (Orbe, Plummer et al., In Prep).
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Transport to the Arctic

Maximum Surface Zonal Streamfunction-based
Winds at 850 hPa (UAS) Hadley Cell Edge (PSI)
o NH JJA [degrees] ° NH JJA [degrees]
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Specified-Dynamics Specified-Dynamics

Note that differences among specified-dynamics simulations are not obviously

related to the use of different analysis products (@), @ . @), but rather to how
the fields are implemented.
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Changes in Transport to the Arctic
over the 21" Century

GEOSCCM WACCM EMAC L47 EMAC L90

pressure [hPa]

100

pressure [hPa]

Robust response among CCMI models:
#1 Increased concentrations at the tropopause (—) and UTLS

#2 Reduced concentrations throughout the troposphere
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Changes in Transport to the Arctic
over the 21" Century

GEOSCCM WACCM

0.35

tropopause-relative
pressure [hPa]
o
[PpPb]

-0.35

0.35

pressure [hPa]
[pPb]

tropopause-relative

-0.35

#1 Increased concentrations at the tropopause primarily retlect an
increase in tropopause height (Holzer and Boer (2001), Fang et al. (2011),
Doherty et al. (2017), Abalos et al. (2017)).

#2 Reduced concentrations throughout the troposphere persist.
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Changes in Transport to the Arctic
over the 21" Century

TND ADV EDDY RES

REF REF REF REF

300 300 300 300

500 500 500 500

700 700 700 700
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(x10°)
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0 20N 40N 60N 80ON 00 20N 40N 60N 80N 5 ooN 46N 60N 80N O 20N 40N 60N 80N

Xt = —U"Xy — WX, +V-M+L+X
TND ADV EDDY RES
Tracer budgets, cast in terms of the Transformed Eulerian Mean as in Abalos et

al. (2017), indicate that loss tracer concentrations primarily reflect a balance
between eddy-induced mixing and transport by (parameterized) convection.
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Changes in Transport to the Arctic
over the 21" Century

REF REF REF REF

300 300 300 300
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Changes in budget terms indicate that reduced concentrations of loss tracers

are associated with reduced vertical transport by both eddies and
convection, not by changes in the mean circulation.
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Changes in Transport to the Arctic
over the 21° Century

Multi-model Mean

DJF rms W|85OhPa FTR-REF 5rms(w|85OhPa)
40
35
@2 30
X,
25
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15
10°N 20°N O°N  40°N  50°N  60°N 10°N 20°N  30°N  40°N 50°N  60°N
m— GEOSCCM === N|WA — \R| EMAC-L47
m—— \/ACCM ACCESS === NIES - - EMAC-L90

Consist with both reduced convective mass fluxes in the future (Held and
Soden (2006)) as well as robust decreases in lower tropospheric vertical
motion in stationary eddies(Wills and Schneider, 2016).
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l. Transport to the Arctic
Hindcast (1960-2010) simulations show:

-Large differences in transport to high latitudes among both specified-dynamics
and free-running simulations.

-Poleward extent of the Hadley Cell controls the poleward transport of tracers
emitted only over land, whereas ocean convection matters more for tracers with
ocean Sources.

-Certain measures of the Hadley Cell are poorly constrained in specified-
dynamics simulations, consistent with large differences in meridional transport.

Orbe, C., Yang, H., Waugh, D. W., Zeng, G., Morgenstern, O., Kinnison, D. E. et al. (2018). Large-scale
tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations. Atmospheric Chemistry
and Physics, 18(10), 7217-7235.

Yang, H., Waugh, D. W., Orbe, C., Zeng, G., Morgenstern, O., Kinnison, D. E. et al. (2018). Tracer Transport
into the Arctic: Relative Roles of the Midlatitude Jet and the Hadley Cell Edge. Under Review in Atmospheric
Chemistry and Physics Discussions.

Orbe, C., D. Plummer., Waugh, D. W., Yang H., and CCMI Co-authors, Description of the Specified-Dynamics
Experiment in the Chemistry Climate Model Initiative (CCMI) (/n Prep)
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l. Transport to the Arctic

Future (1960-2100) simulations show:

-Consistent increase in transport of NH midlatitude source tracers into the
tropopause/lower stratosphere, primarily due to an increase in tropopause height.

-Reduced vertical transport out of the lower troposphere, consistent with weaker

vertical eddies and reduced convective mass fluxes.

Orbe, C., Abalos M., Waugh, D. W., Wang H., et al. Future Projections of Large-scale Tropospheric Transport
Changes in the Chemistry-Climate Model Initiative (CCMI) simulations, (/n Prep).
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Internemispheric Transport

@ The differences in interhnemispheric transport are also large (30-40%) and no
better constrained among the SD simulations (versus FR).

900-1000 mb Annual Mean 50-Day Tracer Ages (750 )
and the NH Midlatitude Mean Age (I'yg )
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Internemispheric Transport

© Sparse observationally-based estimates of the mean age and 50-day tracer
age (9 ) indicate that all models tend to feature too slow transport (Holzer and

Waugh (2015)).

900-1000 mb Annual Mean 50-Day Tracer Ages (750 )
and the NH Midlatitude Mean Age (I'yg )
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Internemispheric Transport

In the annual mean, SH tracer age differences correlate best with
differences in (parameterized) convection in the tropics and northern
subtropics, particularly over the Pacific Ocean.
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Changes in Interhemispheric Transport
over the 21 Century
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Changes in Interhemispheric Transport
over the 21 Century
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Changes in Interhemispheric Transport
over the 21" Century

FTR-REF* Changes in Northern Midlatitude Mean Age (I'ny)
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Lack of agreement among models, however, with some showing
stronger responses than others.

|
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Changes in Interhemispheric Transport
over the 21° Century

FTR-REF* Convective Mass Flux Changes (CMF: 10°kg/m’/s)
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Changes in interhemispheric transport are correlated with changes in
convective mass fluxes and the amount of upper tropospheric tropical warming.
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Changes in Interhemispheric Transport
over the 21" Century
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Changes in interhemispheric transport are correlated with changes in
convective mass fluxes and the amount of upper tropospheric tropical warming.
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Il. Interhemispheric Transport

Hindcast (1960-2010) simulations show:

-Large differences in interhnemispheric transport among both specified-dynamics
and free-running simulations.

-Strength of (sub)tropical convection is positively correlated with differences in the
efficiency of interhemispheric transport among models.

Orbe, C., Yang, H., Waugh, D. W., Zeng, G., Morgenstern, O., Kinnison, D. E. et al. (2018). Large-scale
tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations. Atmospheric Chemistry
and Physics, 18(10), 7217-7235.

Orbe, C., Plummer D., Waugh, D. W., Yang H., and CCMI Co-authors, Description of the Specified-Dynamics
Experiment in the Chemistry Climate Model Initiative (CCMI) (/In Prep)
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Il. Interhemispheric Transport

Future (1960-2100) simulations show:

-Weaker (~5-10%) interhemispheric transport by the end of the 21* century,
although some models show no significant changes.

-Interhemispheric transport response is correlated with changes in the strength of
lower tropospheric convection and the amount of upper tropospheric tropical
warming.

Orbe, C., Abalos M., Waugh, D. W., Wang H., et al. Future Projections of Large-scale Tropospheric Transport
Changes in the Chemistry-Climate Model Initiative (CCMI) simulations. (/n Prep).
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