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Key Points: 

• In order to take full advantage of cloud computing for analyzing Earth Observation data, 
the data must typically be preprocessed, reorganized, and stored in a more tractable form. 

• A variety of quite different architectures (“Analytics Optimized Data Stores”) can 
provide 1-3 orders of magnitude improvement in analysis speed over the original data 
form. 
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Abstract 
Earth Observation data are a vital resource for studying long term changes, but the large data 
volumes can be challenging to analyze. Time series analysis in particular is hampered by the 
typical thin-time-slice file organization.  We examine several potential solutions inspired in large 
part by the data-parallel methods that have arisen with cloud computing.  These solutions include 
various combinations of data re-organization, spatial indexing, distributed storage and pre-
computation that we term “Analytics Optimized Data Stores” (AODS).  We find that even 
simple solutions (such as a data cube) produce more than an order of magnitude improvement; 
the best provide two to three orders of magnitude improvement. The most performant solutions 
have tradeoffs in terms of generality or storage footprint, but may nonetheless be useful 
components in data analytics frameworks where performance is critical.  

1 Introduction 
With the continuing growth of Earth Observation (EO) data volumes, the analysis of and 

knowledge extraction from these data continues to be a challenge. However, the relatively recent 
development of cloud computing offers some hope that analysis can be tractable. Furthermore, 
the availability to anyone of massively parallel cloud computing opens possibilities that formerly 
were available only to authorized supercomputer users.  This opportunity comes at a cost, 
though, because massive parallel computing in the cloud is typically only possible for data-
parallel computing.  As a result, some problems, such as tightly coupled models, may never be 
tractable in cloud computing.  However, a large class of problems, particularly those where 
spatial regions or time intervals can be computed independently, lend themselves well to cloud 
computing. Still, there is the need to apportion the data in such a way that many compute nodes 
can be brought to bear on them simultaneously and efficiently. 

By way of illustration, let us examine an existing data analysis system to identify how we 
might transform an intractable problem for on-premises systems into a solved problem for cloud 
computing.  The Geospatial Interactive Online Visualization and Analysis Infrastructure 
(Giovanni) provides an online capability to do basic statistical analysis of EO data from NASA 
satellites, as well as some assimilation model outputs.  It provides over 20 different analysis 
functions, but by far the two most popular services are time-averaged maps and area-averaged 
time series. Giovanni has over 30,000 active users and has been cited or acknowledged in over 
1700 publications. However, its popularity can sometimes be a drawback.  The current server for 
Giovanni consists of a basic Linux 32-core multiprocessor.  On occasion, the user load exceeds 
capacity, slowing down all users of Giovanni and sometimes requiring a cold reboot to restore 
service, which terminates user analysis workflows without result. The performance is limited not 
only by the fixed on-premises capacity, but also by the coarse parallelism used, namely on a per-
variable basis.   

Satellite datasets can be as long as 20 years, with some of the assimilation models 
covering more than 65 years.  Both the satellite and model datasets are typically produced in 
time order, that is, by computing over the whole spatial extent for a given time period.  Because 
of this processing mode, Earth Observation and assimilated model datasets tend to be structured 
with a small number of time steps per file, and often only one time step. This means that any 
long time series analysis involves opening and closing a large number of files.  For instance, in 
the case of the 39-year North American Land Data Assimilation System (NLDAS) model output 
is stored as over 340,000 individual files. The overhead of opening and closing files is 
exacerbated slightly by the complex structure of the storage format, Hierarchical Data Format.  
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Simply doing a point extraction over the whole time series can take several hours due to this 
thin-time-sliced organization.  As a result, Giovanni limits the number of data values for which a 
user can request analysis.  For an area-averaged time series of the full spatial extent of NLDAS 
hourly data, the limit is a mere two years of the nearly 40 year time record, clearly constraining 
what a science user can do. Although more sophisticated parallelized code might help this 
somewhat, improvement is likely to be limited.  The high number of file operations is also likely 
to tax the disk subsystems, either at the hardware level or the kernel/filesystem level. 

Attempts have been made to ameliorate this, most notably the construction of datasets 
where each file represents the whole time series for a single grid point, known as  
“Data rods” (Teng et al., 2016), which essentially turn the data organization at right angles. Data 
rods show promise for fast processing in the time direction, but of course do not work well for 
synoptic analysis. Also, this approach represents a data management challenge, with respect not 
only to the dual copies of data to store, but also the handling of active data streams that are 
appending to each data rod file each day. 

Cloud computing provides several capabilities that show promise of breaking the logjams 
often faced by on-premises data analysis systems.  The most obvious is the ability to scale up the 
number of processes working on analysis workflows. However, this is of little value if the initial 
data retrieval is itself a bottleneck. Fortunately, cloud computing also has several ways of scaling 
past this bottleneck. The original solution to this was highly distributed file systems, coupled 
with processors near the data.  The development of MapReduce (Dean and Ghemawat, 2008) and 
the Hadoop Distributed File System (HDFS) (Shvachko et al., 2010) made accessible the ability 
to scale out to thousands of processors, each working on a small portion of data has been a 
fundamental capability of cloud computing. This was followed shortly by highly distributed 
databases in the cloud.  In one example, the Hive system (Thusoo et al. 2009) provides a SQL-
interface to MapReduce frameworks working on data in distributed filesystems such as HDFS.  
Other databases in the cloud ecosystem include columnar NoSQL databases, such as MongoDB.  
Databases can be used in two subtly different ways.  In the first mode, the database is used to 
distribute “chunks” of data for moderately fine-grained data parallelism, but the chunks are 
retrieved as-is for processing by code. Alternatively, superfine data parallelism can be achieved 
by storing individual data values within the database, which allows some processing to occur 
within the database query processing. 

Thus there are a variety of ways to partition, organize and store data in the cloud to 
enable highly data-parallel processing.  For data systems that seek to offer analytics capabilities, 
this gives rise to some significant challenges.  The first is committing to reorganize and write the 
data in a structure that is optimized for analytics.  The second is deciding whether to store this 
analytics-optimized copy, and for how long; unlike on-premises data storage hardware, data 
storage costs in the cloud are typically a direct function of how long they are stored.  The third 
challenge is that the analytics software typically needs to be written (or rewritten) to work with 
the particular data organization or storage format.  For some cases, it may be possible to insulate 
the code from the variations among the schemes by using versatile data structure frameworks 
such as Python Data Analysis Library (pandas) (McKinney, 2015) or Xarray (Hoyer and 
Hamman, 2017). However, the storage schemes are sufficiently diverse that the frameworks 
either do not cover them all yet, or if they do, lose significant performance by not optimizing to 
work with a particular storage structure. Thus, it is useful to understand the performance 
properties of various forms of AODS in order to decide which scheme to use for a given 
application, and because once an AODS has been implemented for a given dataset and/or 
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analytics framework, changing to another can incur significant costs. We describe the 
methodology and results of investigating the performance of 7 types of AODS for 3 different 
geographic extents. 

2 Experimental Setup 
We designed a simple experiment to examine how much processing improvement could 

be obtained from a variety of AODS. We used a common analysis problem, the area-averaged 
time series that presents a challenge for on-premises analysis. In this calculation, cell values for a 
geographic projection are averaged with a weighting of cosine(latitude).  The dataset selected 
was daily gridded aerosol optical depth from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) flying on NASA’s Terra satellite. The data variable can be extracted from 
the MODIS/Terra Aerosol Cloud Water Vapor Ozone Daily L3 Global 1 degree climate model 
grid (Platnick, 2015).  The time period selected covered from March 1, 2000 to February 29, 
2016.  Fig. 1 shows the global time series over this time period. In order to distinguish between 
the contribution to elapsed time from data retrieval vs. calculation, we tried three cases:  a global 
average, an average over the state of Colorado, and an average for the town of Boulder, which 
essentially amounts to a simple point time-series extraction.  We used the Giovanni system to 
establish a single-threaded on-premises baseline. The algorithm computation times were taken 
from just the analysis step in the lineage and did not include the data query, preparation or 
visualization steps that form a typical Giovanni request, in order to focus on the effect of the data 
organization and structures.   

3 AODS Candidates 
The simplest of the AODS we investigated, Architecture #1, was a pre-aggregation of the 

individual data files into larger files with multiple time steps per file. This is a highly simplified 
form of the “data cube” approach used in both Google Earth Engine (Horelick et al., 2017) and 
the Committee for Earth Observation Satellites (Lewis et al., 2017) to simplify time-series 
analysis of satellite swath data.  In our case, we do not need to interpolate or average any of the 
data, as the level 3 MODIS AOD is already on a regular grid.  Nonetheless, the data cube 
approach can potentially improve performance by dramatically reducing the file open and close 
operations.  To compute the area averaged time series, we use ncwa (weighted average) and 
ncrcat (record concatenation) from the NetCDF Command Operators (NCO), a powerful 
computation package written in C++ for network Common Data Form and Hierarchical Data 
Format files (Zender, 2008).  Fig. 2 shows an experiment conducted on an Apple Airbook with 
solid state drives (SSD) for different aggregation levels, where the X axis indicates how many 
time steps are included per file.  (For the 1000-timestep case, the last file has only 789 
timesteps.)  The performance of the single-timestep files is on the same order of magnitude, as 
expected. 

The performance improvement with increasing aggregation size is nearly an order of 
magnitude for the global case and even greater for the spatial subset cases, even without 
invoking any multiprocessing capabilities.  To look for further improvement with multi-
processing, we selected a chunk size of 1000 and executed a 6-way fork (one for each time 
chunk) on a single node in the cloud, using an r4_2xlarge compute node in the Amazon Web 
Services cloud. The results were then concatenated into a time series using ncrcat. 

We also investigated two AODS based on distributed filesystems.  Architecture #2 was a 
simple HDFS-based system using Spark for distributed computation.  Architecture #3 (Fig. 3) 
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was based on Climate Spark (Lu et al., 2017), which saves the data as netCDF files within HDFS 
but adds an indexing scheme of spatio-temporal information of the data, allowing for faster 
retrieval, particularly when dealing with spatial subsets. Since netCDF is a common standard 
format for EO data, this has the potential upside of using archival versions of the data (though for 
expedience in this case, the data were converted from Hierarchical Data Format version 4 to 
netCDF).  

We also investigated four different database-based AODS, two of which represent 
hybrids of a sort.  Architecture #4 uses Hive (Capriolo et al., 2012) on top of HDFS with 
schema-on-read and Spark as a processing engine.  Architecture #5 is the NEXUS architecture 
(Fig. 4 and Fig. 5), which uses a Cassandra database into which space-time chunks of data were 
stored for quick retrieval (Huang, et al. 2018).   In the above database-oriented architectures, the 
database is primarily used for storage and retrieval with computation happening in Spark.   

In Architecture #6, data were stored in a Parquet (Le Dem, 2013) format in Web Object 
Storage. The data were then accessed via the Athena service in the cloud, which provides a 
schema-on-read SQL-like interface to the data.  Finally, in Architecture #7 data were stored as 
individual values in MongoDB.  In this architecture, simple processing can actually be embedded 
in query aggregation functions. 

Clearly, the need to run the AODS in a parallel processing architecture brings with it a set 
of architectural complications that may be difficult to tease out.  It is particularly difficult to 
decouple the computation algorithms from the AODS aspects of the architecture because the 
ways that data are partitioned and accessed are so different.  However, we are less interested in 
picking a winner than in investigating the range of variation and possible causes of variation.   
The hardware platforms are shown in Table 1. Note that even though the on-premises Giovanni 
runs on a multi-processor server, we list the number of nodes and cores as one (1) because it runs 
in single-threaded mode. Ideally, the tests would also be run on a common set of hardware.  
However, the different software architectures may have different hardware requirements to run 
in a performant configuration.  The Athena-based architecture represents a “pure” AODS, in that 
the computational hardware is completely abstracted and indeed impossible for users of the 
service to determine.  Instead customers are billed by the amount of data scanned in response to a 
request. 

An important aspect to several of the AODS is the pre-processing performed on the data 
during the Extract-Transform-Load process, which may include some precomputation. The 
NEXUS system precomputes some area statistics, for example. For the Athena+Parquet 
architecture, we tried two different methods.  In the first, a spatial index (SI) was constructed to 
simplify the query. In the second, a running sum (RS) was computed as a function of latitude and 
longitude and then stored in the Parquet AODS. This dramatically simplifies the run-time 
computation of the area-averaged time series to a simple difference operation between the 
running sums at the end time and beginning time.  This not only produces a faster response 
(usually) but also reduces the amount of data scanned from 350 MB in the SI case to under 4 MB 
in the RS case.  However, it does carry significant drawbacks in terms of data management as the 
running sums must be recalculated and updated in the AODS if the source data are replaced 
through reprocessing, and its optimization capabilities are limited to a small set of computation 
types. 
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4 Experimental Results 
The elapsed times for the three geographic extents are shown for each architecture in Fig. 

6.   Two of the architectures were tested in two different modes:  the Data Cube was tested with 
and without forked multi-processing.  For the Athena+Parquet on-premises Giovanni, the three 
geographic extents take similar amounts of time, indicating that the overriding factor is the file 
operations.  However, when the files are pre-aggregated into data cubes, a dramatic improvement 
is achieved for all three geographic extents with little increase in architectural complexity. 
Furthermore, adding rudimentary fork-based multiprocessing on a single node achieves further 
time savings, resulting in more than an order of magnitude for the global case and two orders of 
magnitude for the spatial subset cases. 

Interestingly, the two distributed-filesystem parallel architectures have similar results for 
the Global and Colorado geographic extents, suggesting that file operations are still a limiting 
factor in these cases. On the other hand, the various database architectures show a fair degree of 
separation among the geographic extents, in keeping with the lack of explicit file open/close 
operations in these architectures.   

On the whole, the filesystem architectures tend to perform roughly equal to the database 
architectures for the global case.  The database architectures tend to be more efficient for the 
Colorado and Boulder case with the maximum improvement being the MongoDB case, which 
outperforms all other architectures for the two small-area regions.  This suggests that for retrieval 
of modest amounts of data from much larger overall datasets, storing the data values individually 
in the database is the most performant.  However, an important caveat to this is that the storage 
footprint of the dataset in MongoDB was as much as 50X the storage footprint of the other 
architectures. 

The most important result is that all of the architectures improve significantly over the 
on-premises Giovanni case with improvement ranging from one to more than three orders of 
magnitude, but most of them falling between one and two orders of magnitude. Thus, in many 
cases implementation decisions among them are likely to be equally driven by cost, data 
management and architectural considerations. For instance, the fastest architecture, MongoDB, is 
also by far the least parsimonious in storage footprint and thus cost. It may thus be particularly 
appropriate for cases where speed is critical and data system managers are willing to pay a 
premium for it, such as in highly interactive data exploration or analysis applications.  
Alternatively, data managers might wish to maintain two copies of data with different running 
sums in the Athena+Parquet case: more expensive than a single copy, but less expensive than the 
50X premium.  At the other end, the data cube architecture is attractive for its simplicity and 
generality. The software needed to create access the data cubes is extremely simple and access 
can be through a variety of languages and methods.  Most of the Spark-based architectures fall in 
between these extremes. It should be noted that the computations used in this experiment were 
quite simple; it is possible that more complicated algorithms would benefit more from the 
massive parallelism available from Spark and similar frameworks. 

5 Conclusions 
Earth Observation and related model output data lend themselves to a variety of analyses 

that rely on long time series:  long-term trends, phenology, climatologies, and diurnal variations 
to name but a few. It is thus ironic that their mode of production so often leads to a data 
organization that is at odds with time series analysis. Data archives are often reluctant to modify 
the data given to them for safekeeping.  However, cloud computing provides a flexible set of 
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storage and compute options that provide data system architects with the possibility of 
decoupling the archive form of the data from the form in which they are analyzed. This brings 
with it a number of challenges:  verifying that the analysis-optimized data represent the same 
content as the archive copy; managing live data collections as data arrive; and maintaining the 
provenance chain.  Also, most of the AODS architectures rely on the data residing on relatively 
expensive spinning or solid-state disk, rather than the Web Object Store that the archive copies 
are likely to inhabit. Thus, data managers will need to be selective in deciding which data 
variables should be presented in analysis-optimized form. Given the cloud paradigm of costing 
data storage as a function of residence time, some data variables may even be temporarily staged 
to AODS to be rotated out after the user community has had a chance to exploit them in favor of 
the next data variables. This staging and de-staging of particular variables could even be 
triggered automatically, on the occurrence of some event (e.g., a volcanic eruption) or 
alternatively, tied to a particular funding cycle on a given topic. It is even conceivable that the 
particular AODS form might be chosen according to the expected community or usage. For 
instance, if combining data with, say, a data cube from Australia, then a data cube container 
might be easier for data interoperability than Spark working over HDFS.  This becomes ever 
more likely as scientists combine data from a variety of providers across different organizations, 
agencies or nations, which may have a different preferred form of AODS.   
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 Architecture Nodes Cores/Node Total Cores RAM/Node Storage 
0 Giovanni 1 1 1 32 Disk 
1 Data Cube 1 8 8 61 SSD 
2 Spark+HDFS 19 (1) 8 8 61 Disk 
3 ClimateSpark 19 (1) 12 228 (12) 24 Disk 
4 Spark+Hive 19 (1) 12 228 (12) 24 Disk 

5 
Spark+Cassandra 
(NEXUS) 1 64 64 122 SSD 

6 Athena+Parquet not available WOS 
7 MongoDB 19 (4) 12 228 (12) 24 Disk 

 
Table 1.  Hardware systems supporting the AODS architectures.  Numbers in parentheses 
indicate the number of nodes (out of the total) that act as head nodes.  “SSD” indicates Solid 
State Drives and “WOS” indicates Web Object Storage. 
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Figure 1.  Area-averaged time series of MODIS/Terra Aerosol Optical Depth from 2000-03-01 
to 2016-02-29. 

Figure 2. Elapsed time for computations of area-averaged time series of MODIS/Terra AOD for 
global (circle), Colorado (square) and Boulder (‘X’).  (The latter two times are virtually identical 
for all levels of aggregation.) 
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Figure 3.  Depiction of ClimateSpark architecture. An external spatio-temporal index of data chunks 
across the HDFS helps optimize retrieval for analysis. 
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Figure 4.  High-level architecture of NEXUS.  Data ingest is handled by an Extract-Transform-Load 
system, which hands off to a Data Processor to partition the input data file into data tiles with pre-
compute some statistics.  On-demand analysis then uses Spark to make computations, fetching data tiles 
from a Cassandra database. 
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Figure 5.  NEXUS’ two-database architecture to enable in-memory map-reduce processing of geospatial 
array data. 
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Figure 6.  Elapsed time results for computation of area-averaged time series for global, 
Colorado, and Boulder cases.  The Data Cube architecture (#1) is run in two modes, without and 
with simple forked multi-processing. The Athena+Parquet architecture (#6) is populated with 
two different forms of the data, the first accompanied by a Spatial index, and the second using a 
Running Sum of the data instead of the data themselves. 
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