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Summary

At NASA, we are researching new battery technologies to 

enable electric airplanes. A key focus is the design of 

electrolytes with improved stability.

Molecular dynamics (MD) simulations are an invaluable 

tool for studying electrolytes. They can:

• Evaluate structural, thermodynamic, and transport 

properties with qualitative or quantitative accuracy;

• Provide important molecular-level details often 

inaccessible to experimental techniques;

• Couple with other computational tools, such as quantum 

chemistry calculations and multiphysics models, for a 

more complete multi-scale description.

We illustrate several relevant examples from studies 

performed by the computational materials group at the 

NASA Ames Research Center.

Methods

Ab initio MD simulations:

• Energetics are described based on density functional theory (DFT), 

where electron densities are taken into account.

• These high fidelity models allow bond breaking and formation, but 

are limited to smaller system sizes and simulation times.

• Simulations were performed in VASP.

Polarizable MD simulations:

• Energetics are described using a classical force field that includes 

atomic polarizability with induced dipoles (APPLE&P).

• This type of force field provides more accurate dynamics.

• Simulations were performed in LAMMPS.

Bead-spring MD simulations:

• Energetics are described using a simple bead-spring model with 

repulsive and Coulombic nonbonded interactions.

• This model significantly reduces the degrees of freedom, allowing 

larger system sizes and simulation times to be accessed.

• Simulations were performed in LAMMPS.

Polyanions

Polyanions yield unity lithium transference numbers, but 

low ionic conductivities. Our bead-spring MD simulations 

investigate the effects of the polymer chain architecture on 

the ionic aggregation and cation dynamics.

Bead-spring models:

Longer side chains yield:

• Greater ionic aggregation (percolated aggregates);

• Faster cation dynamics along percolated ionic pathways.

Stronger ionic interactions yield:

• Greater coordination and aggregation of ions;

• Slower cation dynamics due to longer ion residence times.

Layered ionic structures:

• Formed for two long-side-chain bead-spring models.

• Polymer backbone layers are formed between ionic layers.

• Consistent with experimental X-ray scattering for PAGES.

[1] L. J. Abbott and J. W. Lawson, in preparation; [2] L. J. Abbott, H. G. Buss, B. D. 

McCloskey, and J. W. Lawson, in preparation.
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Dimethoxyethane

DME-based electrolytes with Li[TFSI] and Na[TFSI] salts 

are widely used in Li-O2 and Na-O2 batteries due to 

relatively high cyclability. We are using polarizable MD 

simulations to explore their solvation structures.

Coordination numbers:

• Both Li+ and Na+ are primarily coordinated by DME due 

to favorable interactions with the solvent.

• Cation binding energies are stronger for Li+ than Na+.

Oxygen coordination denticity:

• Bidentate DME are more common for both Li+ and Na+.

• Bidentate [TFSI] are more stable for Na+ than Li+, due to 

the larger solvation shell of Na+.

[1] T. P. Liyana-Arachchi, J. B. Haskins, C. M. Burke, K. M. Diederichsen, B. D. McCloskey, 

and J. W. Lawson, in review.
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Ionic Liquids

Based on our computational studies of two ionic liquids, 

[pyr14][TFSI] and [EMIM][BF4], we propose [pyr13][FSI] 

for improved performance with Li metal anodes.

Electronic stability with Li anode:

• [pyr14][TFSI] cycles longer due to conductive SEI.

• Ab initio MD simulations show vastly different behavior 

of the ionic liquids at the Li surface.6

Ionic conductivities:

• Although more stable to the Li anode, [pyr14][TFSI] has 

low ionic conductivities.

• Polarizable MD simulations indicate that ion mobility is 

improved by reducing the ion solvation size.1

• [pyr13][FSI] balances high mobility with stability.

[1] J. B. Haskins et al., J. Phys. Chem. B 118, 11295 (2014); [2] C. W. Bauschlicher Jr. et al., 

J. Phys. Chem. B 118, 10785 (2014); [3] J. B. Haskins et al., J. Phys. Chem. B 119, 14705 

(2015); [4] J. B. Haskins and J. W. Lawson, J. Chem. Phys. 144, 184707 (2016); [5] J. B. 

Haskins et al., J. Phys. Chem. C 120, 11993 (2016); [6] H. Yildirim et al., J. Phys. Chem. C 

121, 28214 (2017); [7] J. B. Haskins et al., J. Phys. Chem. C 121, 28235 (2017).
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Polyethylene Oxide

PEO/Li-salt mixtures have been extensively investigated as 

electrolytes, but their ionic conductivities tend to be low at 

room temperature. Using polarizable MD simulations, we 

are elucidating the dynamics in PEO/Li[TFSI].

Li+ solvation:

• PEO forms helical structures that highly coordinate and 

tightly bind Li+ with consecutive oxygen atoms.

• Li+ transport is governed by polymer segmental motion.

Polymer segmental dynamics:

• The glass transition temperature increases with salt 

concentration; systems are glassy for Li:EO ≥ 0.3.

• The glass transition corresponds with the onset of 

percolated clusters of temporarily immobile monomers.
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