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ABSTRACT 

To enable effective management, planning, and 
operations for future missions that involve a crewed 
space habitat, operational support must be migrated 
from Earth to the habitat. Intelligent System Health 
Management technologies (ISHM) promise to enable 
the future space habitats to increase the safety and 
mission success while minimizing operational risks. In 
this paper, Water Recycling System (WRS) deployed at 
NASA Ames Research Center's Sustainability Base is 
used for verification and validation of the proposed 
solution.  Our work includes the development of the 
WRS simulation model based on its dynamic physical 
characteristics and the design of Automatic 
Contingency Management (ACM) framework that 
integrates fault diagnosis and optimization. In WRS 
modeling, a nominal model with fault injectors is 
developed. Fault detection and isolation techniques are 
then developed for isolating causes and identifying the 
severity of the faults. Dynamic Programming (DP) 
based fault mitigation strategies are designed to 
accommodate the faults in the system. A series of 
simulations are presented with different fault modes 
and the results indicate that the proposed ACM system 
can alleviate the fault in the WRS optimally regarding 
energy consumption and effects of the fault. 

1.  INTRODUCTION 

Most of the planning and management of space operations 
are conducted locally on earth, limiting real-time input from 
crewmembers during space missions. Space habitat crew 
personnel can be given the opportunity to manage, plan and 
operate much of the missions themselves, by migrating 
operational support from Earth to the original habitat in 
space. This task will require significant automation and 
decision support software, which will benefit a small sized 
crew, by enabling new monitoring, tracking, and 
management capabilities onboard the habitat and related 
Extravehicular Activity platforms. Advances in intelligent 
health management technologies increase mission safety 
and success while minimizing the operational risks and 
costs. This innovation is essential to future habitats 
stationed on other planets, asteroids, or lunar surfaces. To 
meet these needs, ACM (Saxena et al., 2007) strategies, 
which include sensing, fault detection, diagnosis, prognosis, 
and decision-making for fault mitigation are needed.  

Under the recent exponential growth of space 
commercialization, many environmnet control and life 
support simulation models are developed. The investigated 
models include BioSim (Kortenkamp & Bell, 2003), 
engineered by TracLabs and commissioned by NASA JSC, 
HabNet (Do, Owens, & de Weck, 2015) developed in MIT 
Strategic Engineering lab, and V-HAB, led by Space 
Exploration Lab in TU Munich. These models have 
medium or high fidelity and HabNet has been validated by 
real data from ISS! Live! website.  However, most of these 
models are system-level models focus on the producer-
costumer relationship but not the dynamic of the system.  
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Figure 1. NASA Ames Sustainability (Poolla et al., 2015) 

There are reported works on using data-driven based 
approaches to analyze data from NASA Ames Sustainability 
Base, shown in Fig. 1, as a testbed for Deep Space Habitats. 
Poolla et al. (Poolla et al., 2015) used an artificial neural 
network to train the on-site sensor data from the 
photovoltaic (PV) system. Basak et al. (Basak, Hosein, 
Mengshoel, and Martin, 2016) integrated dimensionality 
reduction and Bayesian network structure learning with a 
MATLAB adverse condition detection called ACCEPT to 
detect thermal discomforts of occupants. Iverson et al. 
(Iverson et al., 2012) used a distance-based anomaly 
detection method to monitor parameter values in the space 
operations include International Space Station flight control, 
satellite vehicle system health management, launch vehicle 
ground operations, and fleet supportability. Martin et al. 
(Martin, Schwabacher, & Oza, 2007) compared several 
different unsupervised anomaly detection algorithms on the 
Space Shuttle Main Engine (SSME) data. 

There are also several model-based diagnoses and prognosis 
approaches designed for the Environmental Control and Life 
Support System (ECLSS) (Roychoudhury, Hafiychuk, and 
Goebel, 2013) models the WRS deployed at NASA Ames 
Research Center’s Sustainability Base and design diagnosis 
and prognosis approach for it. The limitation of this work is 
it only focuses on the diagnosis and prognosis approaches 
when fault happens. After fault is diagnosed, there is no 
fault-tolerant control method designed to accommodate the 
fault.   

This research aims to develop advanced ACM for Life 
Support Systems (LSS) in a deep space habitat. The WRS, 
which collects condensate in the air, used water, and recycle 
them into the drinkable and usable water, is one of the 
critical subsystems in LSS. In this research, the WRS in 

Sustainability Base is employed as a reference to build the 
WRS model.  To accommodate faults in the WRS, an 
automatically contingency management framework is 
developed. Different fault modes, both discrete faults, and 
continuous faults are injected into the WRS system. Faults 
are detected by a Lebesgue sampling based Extended 
Kalman filter (LS-EKF) approach (Yan & Zhang, 2014). 
With fault state estimation, Dynamic Programming is used 
to optimize the energy consumption and maintain the WRS 
in a degraded but acceptable operating condition. A series of 
simulations are conducted to demonstrate the effectiveness 
of the proposed method. The ACM strategy developed in 
this research is application agnostic and can be applied more 
generally to other subsystems, such as power subsystem, 
waste processing, and biomass processing in LSS, and other 
NASA systems for outer space missions. 

The paper is organized as follows. Section 3 describes the 
dynamic physical characteristic of WRS and the modeling 
of WRS. Section 4 describes the framework of ACM and 
the functions in this framework. Section 5 illustrates a case 
study, which use Dynamic Programming as an optimal 
control method to mitigate the effect of fault. Section 6 
provides concluding remarks and future works. 

2. WATER RECYCLING SYSTEM MODELING 

The ECLSS (Wieland, 1998) includes atmospheric resource 
management; airborne particulate matter removal and 
disposal; water recovery systems; waste management; fire 
protection systems; and environmental monitoring. WRS 
plays a critical role in ECLSS.  

The WRS in the Sustainable Base collects wastewater from 
sinks and showers and recycles them into clean water. Fig. 2 
shows a schematic diagram of the WRS, which consists of 
tanks, pumps, pipes, filters, and forward osmosis (FO) and 
reverses osmosis (RO) modules.  For outer space missions, 
WRS can reduce the water consumption and extend the 
duration of NASA missions. The WRS consists of two 
primary subsystems, namely FO system and RO system.  

During the service of WRS, components like filters, pumps, 
and pipes will degrade, such as clogging of the filter, 
corrosion of pumps, fatigue, fraction, and cracking of pipes, 
etc. These degradations will result in system performance 

 
Figure 2. Diagram of Water Recycling System (Roychoudhury, Hafiychuk, and Goebel, 2013) 
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degradation, and if not detected or maintained, they will 
eventually lead to system failure (breakage of pipe or pump, 
or complete clogging). Therefore, diagnosis and 
contingency management of WRS is of vital importance to 
the efficiency, reliability, and safety of ECLSS. In the past, 
the results from diagnosis are often used in maintenance, in 
which only the current fault information is utilized and this 
is a reactive strategy. As a result, when health management 
method is developed, it may not be optimal over a long 
period of time. By integrating real-time prognosis, which 
predicts the fault state in futures times and estimates the 
remaining useful life (RUL), we can upgrade the reactive 
strategy to a proactive strategy, which will lead to long-term 
optimization and more reliable and economical maintenance 
activities.   

When a fault is detected, it is desirable that the system has 
fault tolerant capabilities to alleviate the fault or extend the 
life of the system. For outer space missions, when the 
maintenance is not available, such capabilities of automatic 
reconfiguration, fault tolerant control, and health 
management are significant to the safety of the WRS and 
crew.   

For this WRS shown in Fig. 2, a model has been 
established. Since modeling is not the focus of this paper. 
The model is ignored and more details about the model can 
be found in (Tang et al., 2018) and (Roychoudhury et al., 
2013).  

3.  AUTOMATED CONTINGENCY MANAGEMENT 

At each discrete time step 𝑡 , the healthy nominal system 
model and faulty system (with a fault being injected) share 
the same input 𝑢(𝑡). The measurement denoted by 𝑦(𝑡) for 
the healthy system model and 𝑦ො(𝑡) for faulty system will be 
different. The fault detection algorithm takes the difference 
between 𝑦(𝑡)  and 𝑦ො(𝑡)  , also known as residual 𝑟(𝑡) =
𝑦(𝑡) − 𝑦ො(𝑡) , to detect if there is a fault happens in the 
system. Once the residue reaches the threshold, the fault 
isolation algorithm will distinguish sensor fault or 
component fault by the number of residues reaches the 
threshold. If only one residue reaches the threshold, we can 
claim there is a sensor fault. The sensor with fault will 
become offline, and the new sensor will be used online.  

If several residues reach the threshold at almost the same 
time, we can claim there is a component fault. For 
component fault case, the fault mitigation method would be 
used for mitigating the effect of fault. The fault mitigation 
algorithm is executed to generate new fault control signal, 
which will accommodate the fault and reduce the impact of 
the fault.  

Two fault mitigation methods are proposed in this paper. 
The first fault mitigation method uses Dynamic 
Programming to minimize the control effort while every 
state located within predefined constraints. The second fault 

mitigation uses Lebesgue sampling based Diagnosis to 
estimate how severe the fault is, then a proportional-
integral-derivative (PID) controller to mitigate the fault.  

Fig.3 shows the preliminary framework of automated 
contingency management. The details about modeling, the 
structure can be found in (Tang et al., 2018) and 
(Roychoudhury et al., 2013). 

 

 

Figure 3. The framework of Automated Contingency 
Management. 

3.1. Fault Detection 

Diagnosis aims to monitor the health state of the component 
and detect fault or anomaly from the measurements of 
components. In Bayesian estimation theory, the states are 
described by probability density functions (pdf). Diagnosis 
is conducted by comparing the baseline distribution with the 
real-time fault state estimation distribution, as illustrated in 
Fig. 4 (Yan, Zhang, Wang, Dou, & Wang, 2016). The 
baseline distribution (given by the green distribution) is 
obtained from measurement when it is in healthy condition.  

When false alarm rate is 5%, a threshold is defined by the 
5% of baseline distribution. While the diagnostic algorithm 
is executing, it takes a measurement and computes a real-
time estimation distribution of the fault state (given by the 
red distribution). If 90% (predefined confident level of 
detection) of the real-time pdf is beyond the detection 
threshold given by the vertical blue line, then we can claim 
a fault is detected with 5% false alarm rate and 90% 
confidence.  
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Figure 4. Fault detection criteria and fault detection process. 

3.2. Lebesgue Sampling based Fault Identification 

The objective for fault diagnosis is to estimate how severe 
the fault is, which can be used to alarm crew and automatic 
control system. Since the computational resource can be 
limited on a Deep Space Habitat, the Lebesgue Sampling 
based fault diagnosis method is applied. 

Different from traditional Riemann sampling framework 
(RS), LS method divides the state axis by some predefined 
states (also called Lebesgue states). These Lebesgue states 
are deteremined by the number of Lebesgue states and the 
range of feature value. The diagnosis is triggered only when 
the fault state, which is reflected by the fault indicator 
extracted from the raw measurement, changes from one 
Lebesgue state to another, or an event happens (Yan et al., 
2016). To illustrate the concept of LS, a degradation curve 
is shown in Fig. 5.   

 
Figure 5.  Illustration of LS. (a) RS with a fixed time 

interval; (b) LS with fixed Lebesgue state length 
 
It is clear that the degradation in the range 𝑅ଵ  = [1,780] 
cycle is smaller than that in the range 𝑅ଶ  = [780, 1000] 
cycle. Using RS method with fix time interval, as shown in 
Fig. 5(a), the diagnosis algorithm is executed at each cycle 
no matter if it is necessary. The setting of fix time interval, 

although guarantees the tracking accuracy for fault growth 
in the range 𝑅ଶ, results in many unnecessary calculations in 
range 𝑅ଵ. 

Ideally, we expect to reduce the number of diagnosis 
execution in the range 𝑅ଵ where the degradation is slow so 
that more resources can be assigned to other tasks. In the 
range of 𝑅ଶ  where the degradation becomes fast, we 
increase the number of diagnosis execution by assigning 
more resources to diagnosis tasks. 

This strategy, however, involves time-varying sampling 
period that is not an easy task within the Riemann sampling 
framework. With Lebesgue sampling, the realization of this 
approach becomes natural. By defining Lebesgue states on 
the vertical axis of fault dimension, fewer transitions 
between states are made when the fault growth is slow while 
more transitions are made when the fault growth is fast. For 
example shown in Fig. 5(b), only 4 Lebesgue states are 
visited in the first 780 cycles in 𝑅ଵ  and 7 states in the 
remaining 220 cycles in R2, which means that the diagnosis 
only needs to be executed 4 times in 𝑅ଵ and 7 times in 𝑅ଶ. 
With this consideration, in R1, more computation resources 
can be assigned to other tasks while only a little resources 
are needed for diagnosis. In 𝑅ଶ, more resources are assigned 
to diagnosis tasks so that the fault dimension can be tracked 
accurately. 

3.3. Dynamic Programming 

Dynamic Programming (DP) is an algorithmic paradigm 
that solves a given complex problem by breaking it into sub-
problems and stores the results of sub-problems to avoid 
computing the same results again. DP can be used to the 
issues that have the following two main properties: over-
lapping sub-problems and optimal sub-structure.  

For the first property, DP is mainly used when solutions of 
same sub-problems are repeatedly needed. In DP, computed 
solutions to sub-problems are stored in a table so that they 
can be used in future for same sub-problems directly. 
Therefore, DP is not useful when there are no common 
(overlapping) sub-problems. For the second property, a 
problem has optimal sub-structure if optimal solution of the 
given problem can be obtained by using optimal solutions of 
its subproblems.  

In our ACM system, the ACM optimization needs to be 
solved with estimated fault state for a given fault mode 
recursively. When an optimal ACM strategy is generated, 
before it is changed, the optimization will have the same 
structure. Therefore, DP suits the ACM optimization very 
well. It is also worth mentioning that, there are many similar 
components in the LSS, such as pumps, filters, and motors. 
When a fault happens to these components, the optimization 
problem will be defined similarly, which indicates DP can 
also be used in high-level optimization.  
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However, the computation cost of DP will increase 
exponentially with the increase of number of state in the 
optimization, DP is limited to subsystems in WRS. The 
same strategy can be applied to other subsystems so that the 
overall optimization can be achieved. For the WRS 
simulation model developed, there is 11 state and we will 
use the state related to a pump-filter subsystem for case 
study. The selected states are chosen based on the criteria 
that when a component happens, only a few states will 
deviate from the nominal condition while the rest of the 
states remain as the same in short period.  

4. CASE STUDY I: DYNAMIC PROGRAMMING BASED 

FAULT MITIGATION 

As mentioned early, a pump-filter subsystem will be used in 
this section for illustration and demonstration of the 
proposed ACM system and DP optimization.  

4.1. Fault Mode 

In this case study, the Filter2 clogging fault scenario is 
studied. From Fig. 6, 𝑅௙௜௟ , which indicates the hydraulic 
resistance to flow through the Filter2, is directly related to 
the health condition of Filter2 and is used as health 
indicator. According to its dynamics, it is assumed that, 
when clogging happens, the value of this health indictor will 
decrease in a quadratic form and is represented as: 

𝑅௙௜௟௧ଶ = ቊ
5 × 10ି଼ , 𝑡 ≤ 𝑡௙

5 × 10ି଼ − 5 × 10ି଼൫𝑡 −  𝑡௙൯
ଶ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Fig. 6 illustrates the fault scenario when filtering clogging 
occurs at 𝑡௙ = 500 minute.  

 
Figure 6. Degradation curve for  𝑅௙௜௟                                

4.2. Fault Diagnosis  

The objective of fault diagnosis is to detect the component 
fault and estimate how severe the fault is. In this study, the 
faulted component is Filter2. When Filter2 is clogging, the 
pressure of Filter2 will gradually increase. Therefore, the 
pressure of Filter2 is used in Lebesgue Sampling-based 

Extended Kalman Filter (LS-EKF) to detect clogging and 
estimate the parameter 𝑅௙௜௟௧ , which indicate the Health 
Indicator of Filter2. 

As for the LS-EKF method, a state model and a 
measurement model are used for fault detection and 
identification (Tang et al., 2018). Here the EKF is described 
to make this section self-complete. Suppose the fault 
dynamics is described by the following nonlinear model: 

 𝑥௞ = 𝑓(𝑥௞ିଵ, 𝑢௞ିଵ) + 𝜔௞ିଵ   (1) 
 
where 𝑥௞ is the states to be estimated, 𝑓(∙) is the nonlinear 
function of states, 𝑢௞ is the input at time 𝑘, 𝜔௞ିଵ is a zero 
mean Gaussian noises with covariance matrix 𝑄௞.  

The observation model that describes the relationship 
between state 𝑥௞ and measurements 𝑧௞ is given by: 

 𝑧௞ = ℎ(𝑥௞) + 𝜈௞  (2) 
where ℎ(∙) is the measurement function of the state, 𝜈௞ is a 
zero mean Gaussian noises with covariance matrix 𝑅௞. 

For EKF, the Jacobian of 𝑓(∙)  and ℎ(∙)  need to be 
calculated, which is given by: 

 𝐹௞ =  
డ௙

డ௫
|𝑥ො௞ିଵ|௞ିଵ,   𝐻௞ =  

డ௛

డ௫
|𝑥ො௞ିଵ|௞ିଵ   (3) 

Then, the prediction step calculates the mean and covariance 
of the prior distribution by using the following equations: 

 
𝑥ො௞|௞ିଵ = 𝑓(𝑥ො௞ିଵ|௞ିଵ, 𝑢௞)  

𝑃௞|௞ିଵ =  𝐹௞𝑃௞ିଵ|௞ିଵ𝐹௞
் +  𝑄௞ 

(4) 

 
where 𝑥ො௞|௞ିଵ   is the mean of the priori distribution and 
 𝑃௞|௞ିଵ is the covariance matrices of the predicted state. 

When the measurement becomes available, the correction 
step uses it to calculate the posterior distribution, by 
following the following equation: 

 

𝑦෤௞ = 𝑧௞ − ℎ൫𝑥ො௞|௞ିଵ൯

𝑆௞ = 𝐻௞𝑃௞|௞ିଵ𝐻௞
் + 𝑅௞ 

𝐾௞ = 𝑃௞|௞ିଵ𝐻௞
்𝑆௞

ିଵ

𝑃௞|௞ = (𝐼 − 𝐾௞𝐻௞)𝑃௞|௞ିଵ

𝑥ො௞|௞ = 𝑥ො௞|௞ିଵ + 𝐾௞𝑦෤௞

 
(5) 

where 𝑦෤௞  is the measurement residual, 𝑆௞  is the residual 
covariance, 𝐾௞  is the near-optimal Kalman gain, 𝑅௞  is the 
covariance matrix of the observation noises, 𝑃௞|௞  is the 
updated covariance estimate, 𝑥ො௞|௞  is the updated state 
estimate, and 𝐼 is the identity matrix.  

The first task is to detect whether the filter has clogged. This 
is conducted by comparing the baseline 𝑅௙௜௟௧ଶ  distribution 
(obtained from simulation) against the real-time 𝑅௙௜௟௧  
distribution as shown in Fig. 7, which indicates two real-
time estimation pdfs at two different time instants. To make 
the description clear, the 𝑅௙௜௟௧ଶ  without clogging is 
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normalized to 1. With the baseline distribution and 5% false 
alarm, the fault detection threshold is 0.9984, which is 
indicated by the blue vertical line. The mean value of the 
real-time distribution at the 601𝑠𝑡  min is 0.9852 and its 
95% confidence interval is [0.9695, 1.0009]. The probability 
of detection is set to be 0.95, and more than 95% percent of 
the real-time distribution is below the blue line, so it claims 
a fault is detected at the 601𝑠𝑡 min.  Note that the results 
shown in Fig.7 are available at every time instants to reveal 
the fault state pdf, which can be used in ACM.  

 
Figure 7. The fault detection results.  

4.3. Dynamic Programming for Optimal Control  

The objective of DP is to minimize the control effort while 
maintaining each state within their constraints. In this paper, 
DP is implemented, and qualitative evaluation is studied. 
The pump-filter subsystem used in DP is shown in Fig. 8. 

 

𝑝ி்ଶ = Hydraulic Pressure in Feed Tank 2 
𝑝௉௜௣  = Hydraulic Pressure in Pipe Segment 2 
𝑝ி௜௟  = Hydraulic Pressure in the Filter 2 
𝑝ிைଵ = Hydraulic Pressure in the FO Module 1 
𝑞௉௨௠௣ସ = Outflow Rate of Pump 
𝑞ிைଵ  =            Flow of Water from the FO Module to                          
                             Feed Tank 2 
𝑞ி௜௟௧  = Flow rate of Filter 2 

Figure 8. Simplified diagram of subsystem of Water 
Recycling System (Roychoudhury et al., 2013) 

The benefit of DP based fault mitigation is the constraints 
on each state, and the final state can be adjusted based on 
the physical limitation (threshold) of the component or 
system and the need of the crew.  

4.3.1. Problem Definition 

When the filter clogging fault is isolated, our objective is to 
minimize the control effort or energy cost for the Pump4. 
DP is used for optimal control of this subsystem.  

When clogging fault occurs in Filter2, the pressure of 
Filter2 (𝑝ி௜௟௧௘ ) will increase by clogging. As a result, the 
outflow rate at Pump4 (𝑞௣௨௠௣ସ ) and the outflow rate of 
Filter2 (𝑞ி௜௟௧௘௥ଶ) will decrease. The water transferred from 
FO Module to Feed Tank 2 is denoted by 𝑞ிைଵ . 

Therefore, based on these measurements and states, the 
filtering subsystem has three states (𝑝௉௜௣௘ଶ,𝑝ிைଵ, 𝑝ி்ଶ) and 
three measurements ( 𝑞௣௨௠௣ , 𝑞ி௜௟௧௘௥ଶ , 𝑞ிைଵி்ଶ ). The 
optimal control problem is to find an admissible control 
sequence 𝑢௞, 𝑘 =  0, 1, . . . , 𝑁 , (𝑁  indicates the final time 
instance) such that the cost function is minimized and the 
constrains are satisfied (Elbert, Ebbesen, & Guzzella, 2013), 
as shown in Eq. (6) 

 
min

௨ೖ∈௎ೖ

൝𝑔ே(𝑥ே) + ෍ 𝑔௞

ேିଵ

଴

(𝑥௞ , 𝑢௞)ൡ 
(6) 

𝑥௞ାଵ = 𝑓௞(𝑥௞ , 𝑢௞) 

𝑥௞ ∈ 𝑋௞ ⊆ ℝ௡ 

𝑥ே ∈ 𝑇 ⊆ ℝ௡ 

𝑢௞ ∈ 𝑈௞ ⊆ ℝ௠ 

For all 𝑘 = 0, 1, … , 𝑁. 

where 𝑔ே(𝑥) is the final cost term and 𝑔௞(𝑥௞ , 𝑢௞)  is the 
stage cost, 𝑥଴  and 𝑥ே  are the initial state and final state, 
respectively, and 𝑥ே  is constrained by a target set 𝑇 . 
Additionally, the input signals are constrained by the time-
variant set 𝑈௞ .The functions 𝑓௞  and 𝑔௞  are discrete-time 
representations of the dynamic system and the stage-cost 
function.  

At time 𝑘 , the state space is discretized to the set 𝑋௞ =

൛𝑥௞
ଵ, 𝑥௞

ଶ, … , 𝑥௞
௤

ൟ, where superscript 𝑖  in 𝑥௞
௜  denotes the state 

variable in the discretized state–time space with time index 
𝑘 and state index 𝑖. The control space is represented by the 
discrete set 𝑈௞ = ൛𝑢௞

ଵ , 𝑢௞
ଶ, … , 𝑢௞

௤
ൟ. When a fault happens, DP 

starts and the control space is computed by DP backward 
process. The control space with minimum cost would be use 
by DP forward process for fault mitigation. 

4.3.2. Dynamic model of the filtering system 

To implement DP algorithm efficiently, the filtering system 
in FO module shown in Fig. 8 is used as a case study. The 
mathematical model of this filtering system is given as: 

The following Ordinary Differential Equations (ODE) 
describe the filtering subsystem: 

  𝑝̇ி்ଶ =
ଵ

஼ಷ೅మ
(𝑞ி௜௟௧ଵ + 𝑞ிைଵி்ଶ − 𝑞௉௨௠௣ସ)          (7) 
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𝑝̇௉௜௣௘ଶ =

1

𝐶ி௜௟௧ଶ

(𝑞௉௨௠௣ସ − 𝑞ி௜௟௧ଶ) 
(8) 

 
𝑝̇ிைଵ =

1

𝐶ிைଵ

(𝑞ி௜௟௧ଶ − 𝑞ிைଵி்ଶ − 𝑞ிை) 
(9) 

with the constraints of 𝑝ி்ଶ ∈ [0,10] , 𝑝௉௜ ∈ [0,160],

𝑝ிைଵ ∈ [40,50] , and 𝑢௉௨௠௣ ∈ [1.0,1.2] . The specified 
constraint values for the optimization problem are selected 
based on our understanding of the system. These values can 
be adjusted according to the real system. The selection of 
these values, however, does not affect the implementation of 
the proposed solution. 

Note that the constraint on 𝑝ிை  is based on assumption that, 
at this range, the water flow into the FO Module 1 is 
considered to be accessible for the crew and other 
components. The constraint on 𝑝௉௜௣௘ଶ and 𝑝ி்  are based on 
assumption that the Pipe2 can operation for pressure less 
than 160 psi. Note also that the pressure of Feed Tank2 will 
not change significantly. Because before Pump4 starts to 
work and Filter2 becomes clogging, the water transferred 
into the Feed Tank2 is much more than water transferred out 
from Feed Tank2. To simplify the problem, it is assumed 
that the increase of pressure in Feed Tank2 (𝑝ி் ) is mainly 
caused by the water transferred into Feed Tank2. Therefore, 
the state model for 𝑝ி்ଶ can be simplified as follows: 

 𝑝̇ி்ଶ = 𝑎                 (10) 

The cost functional to be minimized is given by 

  J = ∫ 𝑢௉௨௠௣ସ𝑑𝑡
௧೑

଴
 (11) 

4.3.3. Simulation Result 

When continuous Filter2 clogging fault mode is injected 
into the model, diagnosis algorithm will detect whether 
there is a fault, as shown in Fig. 7. Once the fault is 
detected, the DP base fault mitigation would compute all 
possible control space from 𝑥ே  to 𝑥଴  numerically, and the 
control sequence with minimum cost as the control signal 
for the fault mitigation.  

Fig. 9 illustrates the simulation results of this case study, 
which include the results of the pressure of Pipe2, the 
pressure of FO Module 1 and the input signal of Pump4. 
When Filter2 clogging occurs, the pressure of FO Module 
will decrease, which means less water is being transferred 
into the FO Module1. The Filter2 clogging will affect other 
modules after FO Module 1 in the long run. Therefore, 
constraints on the 𝑝ிைଵ  are set between 40 psi to 50 psi 
(represented by the red line in Fig. 9(b)), and assuming this 
is appropriate for crew and other system.  

Fig. 9(a) shows that, when fault at Filter2 happens, the 
pressure at Pipe2 will decrease (represented by the black 
line). With  DP based fault mitigation, the pressure of Pipe2 
will increase within a constraint. In this case study, we 
assume when Pipe2 can operate under pressure less than 
160psi. 

 

 

Figure 9. Simulation results of Dynamic Programming 
based fault mitigation. (a) The pressure of Pipe2; (b) The 

pressure of Forward Osmosis Module1; (c) The input 
control signal 

As shown in Fig. 9(b), when the fault happens, the pressure 
of FO Module1 decreases quadratically (represented by the 
black line), which indicates the water transferred in the FO 
Module is much less than the normal condition (represented 
by the green line). The magenta line represents the results 
after DP based fault mitigation is implemented while the 
system is operated in a degraded but accessible situation. 
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Fig. 9(c) represents the control signal for Pump4. In this 
case study, the magnitude of the input signal for Pump4 is 
normalized to 1, and the 1.2 represents the maximum input 
for Pump (restricted by the physical limitation of Pump4).  

4.3.4. Resolution 

The state space must be discretized for the DP algorithm. 
The resolution of the state-space discretization is a critical 
factor for DP. With the increase of resolution, the accuracy 
of the solution would improve, but the more computation 
effort is required.  

Therefore, a study is carried out to quantify the accuracy of 
the solution obtained by the DP for the pump-filter 
subsystem in WRS. Fig. 10 shows the deviation of the 
optimal solution evaluated with DP with different state-
space discretization density. From the simulation result, we 
can conclude that when the state space discretization 
increase, the cost of the control input will increase.  

 

Figure 10. Cost consumption deviation with different state-
space discretization. 

5. CASE STUDY II: PID CONTROLLER BASED MULTI-
STAGE FAULT MITIGATION 

For PID based fault mitigation, it is a static optimization 
strategy. Based on the severity of fault, the fault mitigation 
method with PID controller can be divided into three stages.  

1) At the first stage, when the fault is not severe, the 
control objective is to bring the outflow rate of Filter2 
back to its normal condition.  

2) At the second stage, when fault becomes more severe, 
the control objective is to bring the outflow rate of 
Filter2 to degraded performance. In this study, 95% of 
the normal outflow rate is considered as a reference.  

3) At the third stage, when fault becomes even more 
severe, the control objective is to bring the outflow rate 
to further degraded performance. In this study, 85% of 
the regular outflow rate is considered as a reference. At 

this stage, the relief valve would be opened to maintain 
the pressure of Filter2 into an accessible range.  

 

 

 

 

Fig. 11 Simulation result of PID controller based multi-
stage fault mitigation. 
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Fig. 11 shows the results of fault mitigation. In these 
figures, the first red vertical line represents fault happens at 
𝑡 = 500𝑡ℎ min. The second red vertical line represents fault 
detected at 𝑡 = 601𝑠𝑡 min. At this time, the PID controller 
starts working, which indicates the fault mitigation Phase I 
starts. The third red vertical line represents fault mitigation 
stage II begins at 𝑡 = 804𝑡ℎ  min. The fourth red vertical 
line represents fault mitigation stage III begins at 𝑡 = 900𝑡ℎ 
min. Fig. 11(a)-(d) show the outflow rate of Filter2, and 
outflow rate of Pump4, the pressure of Filter2, input to the 
Pump4, respectively.  

When the fault happens at the 500th min, the pressure of 
Filter2 begins deviating from the nominal system pressure. 
The outflow rate of Filter2 starts decreasing, which means 
the water production begins to drop. As a result, the outflow 
rate from pump4 starts dropping too. Lebesgue sampling-
based diagnosis detects filter clogging at the 601𝑠𝑡 minute. 
At this time, fault mitigation stage I would start, and the 
PID controller will follow the reference signal and bring the 
outflow rate of Filter2 to the nominal condition. At time 
803rd minute, when the reference signal cannot be 
maintained because the physical limitation of Pump (In this 
study, we assume the limitation is 115% of operating 
voltage, and 95% of the normal outflow rate of Filter2 is 
used as the new reference signal at Stage II. The pressure of 
Filter2, however, is still increasing because of the 
degradation of the Filter2. When the pressure becomes 
higher than 88 psi, which is the limit set to keep the safe of 
WRS, the relief valve is opened to keep the pressure of 
Pump4 below this safety threshold. At this time, the 85% of 
the outflow rate in normal condition is used as the new 
reference signal at this stage. 

6. COMPARISON OF DP AND PID-BASED ACM 

By comparing the simulation result from these two different 
approaches, the advantages and disadvantages of these two 
approaches are discussed in Table 1. 

7. CONCLUSION 

In this work, an automated contingency management 
solution is developed and the WRS in NASA Ames 
Sustainability Base is used as a testbed for verification and 
validation. Lebesgue sampling-based diagnosis is used for 
fault diagnosis. Dynamic programming and a PID-based 
fault mitigation strategy are introduced in the proposed 
ACM system for comparison studies. 

For the future work, we will seek the access to the real data 
set of photovoltaic and WRS systems for ACM verification. 
Meanwhile, the physical degradation characteristic of 
components in the WRS can be derived from regression 
methods. The NASA existing abnormal detection toolbox 
will also be integrated into the proposed system to introduce 
a data-driven approach for fault detection. 

Table 1. Comparison between DP based fault mitigation and 
Multi-Stage PID based fault mitigation. 

 DP Multi-Stage PID 

A
dv

an
ta

ge
 

The constraints can be set 
based on the physical 
limitation of the 
component and the 
reference signals are not 
required for DP. 
Simulation results show 
that the performance of 
average outflow rate of 
the Filter2 is better than 
the Multi-Stage PID 
based approach. 

PID controller can bring 
the some of the 
measurements to its 
normal condition or a 
degraded performance 
which follow the 
reference signal. 
Simulation results show 
that the performance on 
energy cost of the Filter2 
is 11.91% less than that of 
the DP based approach. 

D
is

ad
va

nt
ag

e 

When the state dimension 
of the system is large, the 
computation cost would 
grow exponentially, 
which becomes the major 
limitation for this 
approach being applied on 
space habitat. 

The reference signal 
derived from a high-level 
optimization strategy is 
required. 
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NOMENCLATURE 

ACM = Automated Contingency Management 

DP = Dynamic Programming   

ECLSS = Environmental Control and Life Support                         

                             System             

EKF = Extended Kalman Filter 

PF = Particle Filter 

PV = Photovoltaic 

WRS = Water Recycling System 

LSS = Life Support System 

LS = Lebesgue Sampling 

RS = Riemann Sampling 

ODE = Ordinary Differential Equation 
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