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Material Design and Modeling e
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* Advanced Light Source (ALS) at the Lawrence
Berkeley Natl. Laboratory

* Synchrotron electron accelerator used to
produce 14Kev X-rays

* Used for many research areas, including
optics, chemical reaction dynamics, biological - : Shmeiy
imaging, and X-ray micro-tomography.

http://www2.1bl.gov/MicroWorlds/ALSTool

Mansour et. al, A new approach to light-weight ablators analysis: from micro-tomography measurements to statistical analysis and
modeling, 44t" AIAA Thermophysics. (2013) 5


http://www2.lbl.gov/MicroWorlds/ALSTool/

X-ray micro-tomography e

Collect X-ray images of the sample as you rotate Use this series of images to
it through 180° “reconstruct” the 3D object
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Micro-scale modeling
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2. Material Decomposition

1. Material Properties

1. Phenomenological Properties 1. Oxidation
2. Thermal transport 2. Sublimation
3. Spallation

3. Mass transport




Porous Microstructure Analysis (PUMA) Technical Specifications

*  Written in C++
Domain Generation * GUIlbuiltonQT
SR Micro-tomo ' * Visualization module based on OpenGL
-tomography
Import, Processing, * Parallelized using OpenMP for shared
memory systems
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Ferguson et. al, PuMA: the Porous Microstructure Analysis software. Submitted to SoftwareX (2017) 9




Micro-scale modeling
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Effective Material Properties

Porosity

Based on the grayscale
threshold

Sum of all void voxels over
the total volume

Specific Surface Area

Based on the Marching
Cubes algorithm

Overall surface area
computed as a sum of
individual triangle areas
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Effective Thermal Conductivity

* Computes effective thermal conductivity using a
finite difference method [Weigmann, 2006]

* BicGStab iterative method and FFTW used to
solve linear system of equations [Sleijpen, 1993]

* Parallelized based on OpenMP

* Verified against complex analytical solutions

12-ply, infused
(fully dense)




Effective Electrical Conductivity

* Computes effective electrical conductivity R
using a finite difference method | ’
[Weigmann, 2006]

* 1V voltage differential applied; solved
with periodic boundary conditions

e BicGStab iterative method and FFTW
used to solve linear system of equations
[Sleijpen, 1993]

e Parallelized based on OpenMP

* \Verified against complex analytical
solutions

e Steady state current flow through a
material can be determed

Steady state current flow through a carbon fiber
material with an imposed voltage differential

13
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Diffusivity / Tortuosity

Continuum

Quantifies a materials
resistance to a diffusive flux
Solves for effective diffusivity
using a finite difference
method

Valid for Kn << 1

Solves diffusion equation
using periodic boundary
conditions

Ferguson et. al, Particle methods for tortuosity factors in porous media, 9t Ablation Workshop, Bozeman MT. (2017). 14
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Diffusivity / Tortuosity — Random Walk

Transitional/Rarified

T
* Random walk method to simulate diffusion it
* Mean square displacement method used a
to solve effective diffusion §
e Valid for all Knudsen numbers. o
* Knudsen number is varied by changing the
molecular mean free path
i A mean free path o
n=-—== —
d characteristic length i
=
. . . c
* Surface collisions based on marching cubes =
triangles with diffuse reflections used L
Ferguson et. al, Particle methods for tortuosity factors in porous media, 9t Ablation Workshop, Bozeman MT. (2017). 15



Micro-Scale Oxidation Simulations

Particle-based oxidation method R—
" " " - I
Diffusion simulated through random walks i
Collision detection with linear interpolation method
Sticking probability method for material recession
Verified against analytical solutions for single fiber §
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Ferguson et. al, Modeling the oxidation of low-density carbon fiber materials based on micro-tomography, Carbon. (2016). 16
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Random Fiber Structures

Material Generation

Packed Sphere Beds

Periodic Foams
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Challenges: Segmentation

Raw Grayscale Data Segmented Data




Thresholding Approach
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When Thresholding Works Well

1. Two phase materials
2. Direction is irrelevant

3. High contrast between
phases

21




When Thresholding Fails

1. Multi phase materials
2. Direction is important

3. Low contrast between
phases

22



Example 1: Woven Materials

Why thresholding fails

Need to separate the weave
directions from one another for
modeling purposes



Example 1: Woven Materials




Example 1: Woven Materials




Example 1: Woven Materials

Training Data Available

1. 6-ply weave
2. 4-ply weave
3. 12-ply weave

Manually Segmented
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Example 2: Asteroid Samples

Why thresholding fails

Multiple phases with overlap in
grayscale value. Can’t
distinguish between phases
through thresholding methods
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Example 2: Asteroid Samples

Matrix
crack
Iron/nickel
Not a crack
Not a crack
Not a crack

crack
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Prediction of sun spots
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Prediction of sun spots
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Prediction of sun spots
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~ Questions?

Point of Contact: Jerp{L C. Ferguson
Joseph.c.ferguson@nasa.gov

May 24t, 2018
Mountain View, CA



