

X-ray microtomography applied to NASA missions and projects

Joseph C. Ferguson

May 24th, 2018 Mountain View, CA

Ablative Thermal Protection Systems

Stardust Capsule

Dragon V1 & V2

Mars Science Laboratory

Material Design and Modeling Bow Shock **Boundary Layer** Radiation Char Layer **Pyrolysis Zone** Conduction Virgin Material

Material Design and Modeling

Lawson et. al. 2010

X-ray micro-tomography

- Advanced Light Source (ALS) at the Lawrence Berkeley Natl. Laboratory
- Synchrotron electron accelerator used to produce 14Kev X-rays
- Used for many research areas, including optics, chemical reaction dynamics, biological imaging, and X-ray micro-tomography.

http://www2.lbl.gov/MicroWorlds/ALSTool

Mansour et. al, A new approach to light-weight ablators analysis: from micro-tomography measurements to statistical analysis and modeling, 44th AIAA Thermophysics. (2013)

X-ray micro-tomography

Collect X-ray images of the sample as you rotate it through 180°

Use this series of images to "reconstruct" the 3D object

Courtesy of D. Parkinson (ALS)

Micro-scale modeling

- 1. Material Properties
 - 1. Phenomenological Properties
 - 2. Thermal transport
 - 3. Mass transport

- 2. Material Decomposition
 - 1. Oxidation
 - 2. Sublimation
 - 3. Spallation

Porous Microstructure Analysis (PuMA)

Technical Specifications

- Written in C++
- GUI built on QT
- Visualization module based on OpenGL
- Parallelized using OpenMP for shared memory systems

File Visual	ization Oxi	dation H	elp			UMA		
Domain Ge	neration I	Material P	roperties	REV Analy	sis Oxida	tion Simulation		
Micro-tom	graphy Imp	oort Ger	ierate Arti	ficial Geom	etry			
		image in	nport					
Load 3D Tiff Image			100%			Revert Threshold	Image: 799	Revert Crop
			-	and the charter	_			
Subdomain Extraction						Distantian in		1
X-max	800	Y-max	800	Z-max	800	A		
X1	200	11	200	Z1	200	1		
X2	599	¥2	599	22	599	1 30		
Voxel	ength (um)	0.65				A		100
Impo	rt Domain	1		100%	and the			
							4	
		Thres	holding -					
Ē	Λ	1					0	
	11							
1000	11				10000	1 89		B.
						Press.		10.0
0	40 8	0 12	0 160	200	240			1 6
Graver	le Banne o	f Material	87	to C	255	and the second se		17.
Chayber	ne nonge o	- Harber Har	A	only Thresh	bld	×	-	
				april milear			- /	1
Poro	sity 0.83	7786	Create	3D Visualiz	ation			

Ferguson et. al, PuMA: the Porous Microstructure Analysis software. Submitted to SoftwareX (2017)

Micro-scale modeling

- 1. Material Properties
 - 1. Phenomenological Properties
 - 2. Thermal transport
 - 3. Mass transport

- 2. Material Decomposition
 - 1. Oxidation
 - 2. Sublimation
 - 3. Spallation

Effective Material Properties

Porosity

- Based on the grayscale threshold
- Sum of all void voxels over the total volume

Specific Surface Area

- Based on the Marching Cubes algorithm
- Overall surface area computed as a sum of individual triangle areas

Effective Thermal Conductivity

- Computes effective thermal conductivity using a finite difference method [Weigmann, 2006]
- BicGStab iterative method and FFTW used to solve linear system of equations [Sleijpen, 1993]
- Parallelized based on OpenMP
- Verified against complex analytical solutions

Effective Electrical Conductivity

- Computes effective electrical conductivity using a finite difference method [Weigmann, 2006]
- 1V voltage differential applied; solved with periodic boundary conditions
- BicGStab iterative method and FFTW used to solve linear system of equations [Sleijpen, 1993]
- Parallelized based on OpenMP
- Verified against complex analytical solutions
- Steady state current flow through a material can be determed

Steady state current flow through a carbon fiber material with an imposed voltage differential

Diffusivity / Tortuosity

Continuum

- Quantifies a materials resistance to a diffusive flux
- Solves for effective diffusivity using a finite difference method
- Valid for Kn << 1
- Solves diffusion equation using periodic boundary conditions

Diffusivity / Tortuosity – Random Walk

Transitional/Rarified

- Random walk method to simulate diffusion
- Mean square displacement method used to solve effective diffusion
- Valid for all Knudsen numbers.
- Knudsen number is varied by changing the molecular mean free path

 $Kn = \frac{\bar{\lambda}}{\bar{d}} = \frac{mean\;free\;path}{characteristic\;length}$

• Surface collisions based on marching cubes triangles with diffuse reflections used

Micro-Scale Oxidation Simulations

Va

 V_2

W(x, y, z)

W'(x', y', z)

Air

P1

 V_1

Particle-based oxidation method

Ferguson et. al, Modeling the oxidation of low-density carbon fiber materials based on micro-tomography, Carbon. (2016).

Material Generation

Challenges: Segmentation

Segmented Data

Thresholding Approach

When Thresholding Works Well

- 1. Two phase materials
- 2. Direction is irrelevant
- 3. High contrast between phases

When Thresholding Fails

- 1. Multi phase materials
- 2. Direction is important
- 3. Low contrast between phases

Why thresholding fails

Need to separate the weave directions from one another for modeling purposes

Training Data Available

6-ply weave
4-ply weave
12-ply weave

Manually Segmented

Example 2: Asteroid Samples

Why thresholding fails

Multiple phases with overlap in grayscale value. Can't distinguish between phases through thresholding methods

Prediction of sun spots

Prediction of sun spots

Prediction of sun spots

Unknowns

- 1. How to apply ML/AI techniques to time-series data
- Would processing velocity data give more information: gradients, curl, etc.

Questions?

Point of Contact: Joseph C. Ferguson Joseph.c.ferguson@nasa.gov

May 24th, 2018 Mountain View, CA