

Dynamic Power Convertor Development for Radioisotope Power Systems at NASA GRC **AIAA Power and Energy Forum** July 9, 2018 Salvatore Oriti, Scott Wilson NASA Glenn Research Center Thermal Energy Conversion Branch www.nasa.gov

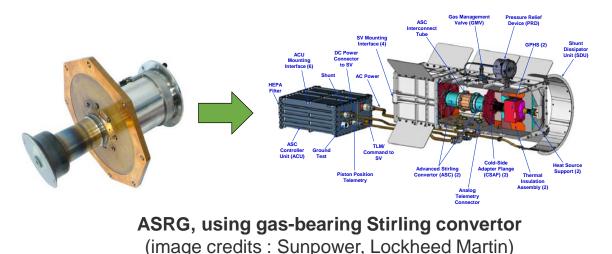
Dynamic-Conversion Power System Background

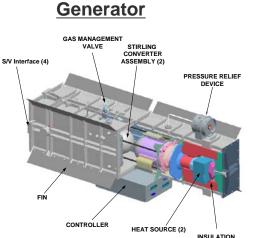
Advantages:

- Higher thermal-to-electric efficiency (up to 40%)
- Lower waste heat to output power ratio
- Low generator power decline (fuel decay only)
- Large multi-mission generator design space
- Extensible to high power levels

<u>SRG-110</u>

- ~114 W_e output
- Infinia's Technology Demonstration Convertor (TDC)
- 2 Pu-238 GPHS modules
- Overall efficiency = 23%
- 4.2 W_e/kg (before engineering unit build)
- Developed during 2001 to 2006 timeframe


<u>ASRG</u>


- ~140 W_e output
- Sunpower's Advanced Stirling Convertor (ASC)
- 2 GPHS modules
- Overall efficiency = 28%
- 4.4 W_e/kg
- Developed during 2006 to 2013 timeframe

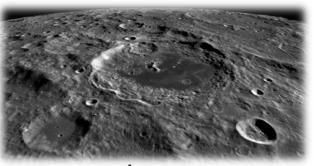
National Aeronautics and Space Administration

SRG110, using flexure-bearing Stirling convertor ^s (image credit : Lockheed Martin)

Convertor

2

Convertor Performance Goals


ltem	Description		
Life	20 years		
Efficiency	≥ 24% at T _{cold} > 100 °C		
Specific Power	≥ 20 W_e/kg (convertor only)		
Partial power	Can be throttled down to 50%		
Degradation	< 0.5% / year		
Hot-End Temp	< 1000 °C		
Cold-End Temp	20 to 175 °C		
Random Vibe	Launch qual		
Static Accel	20g for 1 minute, 5g for 5 days		
Radiation	300 krad		
Size	Enables generator that can fit in DOE shipping container		

Robustness goals also defined:

- Design has margin to tolerate events outside expected environments
- Fewer single-point-failures is more robust
- Tolerant of loss of electrical load
- Tolerant of operational error
- Manufacturability not dependent on specialized workmanship

Applicable to wide range of missions

Lunar (Far side & South Aitken Basin)

Europa

Titan

Convertor Development Timeline

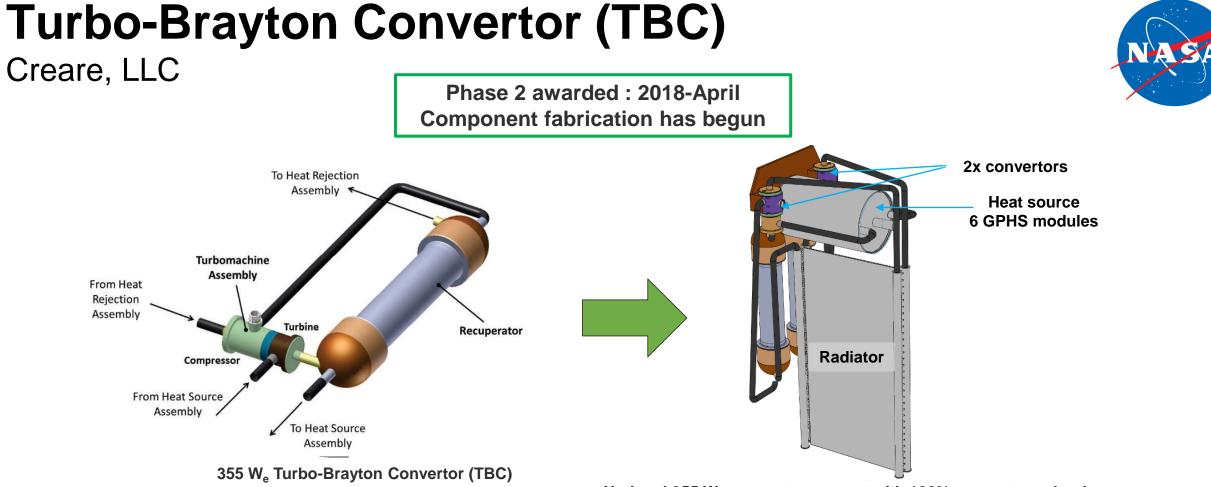
Status	Date	Description
✓	2016-Aug	RFP Release
✓	2016-Nov	Proposal review
✓	2017-Jul	Contract awards (4)
✓	2017-2018	Phase 1 - Design
✓	2018-Apr	Decision Gate 1
Ongoing	2018-2020	Phase 2 – Fab & Test
Future	2020-2021	Phase 3 – IV&V
Future	2021	Decision Gate 2
Future	2021	Goal : Begin DOE flight generator development

Convertor development contracts awarded in 2017:

ltem	Units	Flexure Isotope Stirling Convertor (FISC) American Superconductor, Inc.	Turbo-Brayton Convertor (TBC) Creare, LLC	Thermo-Acoustic Power Convertor (TAPC) Northrop Grumman	Sunpower Robust Stirling Convertor (SRSC) Sunpower, Inc.
Power	W _e	70	355	110	65
Efficiency	%	31	26	26	29
Hot-end Temp	С°	650	730	700	720
Mass	kg	3.3	15.5	6.4	2.0
Specific Power	W _e /kg	21	22	17	33

Flexure Isotope Stirling Convertor (FISC)

American SuperConductor (AMSC), formerly Infinia Tech Corp.

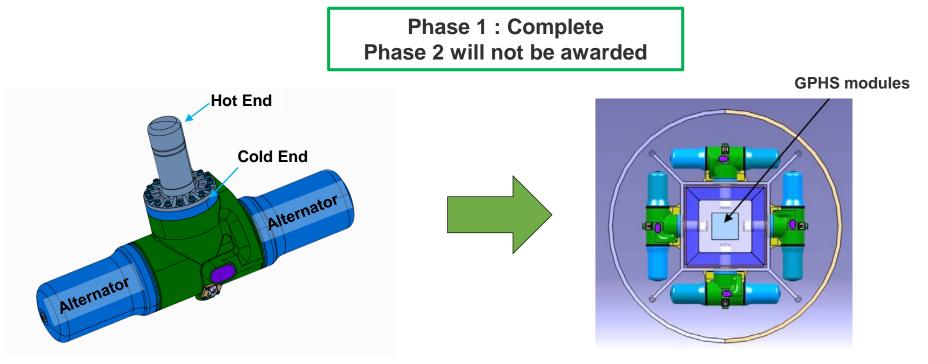


Notional 420 W_e generator concept with 100% convertor redundancy

FISC Characteristics	FISC	Characteristics	
----------------------	------	-----------------	--

Power Output	70 W _e
Efficiency	31% @ T _{COLD} =100°C
Fraction of Carnot	0.52
Hot-end Temp	650 °C
Mass	3.3 kg (~21W _e /kg)

- Flexure-bearings, beta arrangement free-piston Stirling convertor
- Derivative of Technology Demonstration Convertor (TDC) from SRG-110 project
- TDCs have established long operational life via convertor testing at GRC
- Design deltas relative to TDC to improve the following:
- 1. Higher radial stiffness flexures, overstroke tolerance, hot-end temperature margin
- 2. Independently verifiable subassemblies
- 3. Higher efficiency alternator, higher cold-end temp capability
- 4. System integration : Tailored interfaces


Notional 355 W_e generator concept with 100% convertor redundancy

Power Output	355 W _e	
Efficiency	26% @ T _{COLD} =100°C	
Fraction of Carnot	0.41	
Turbine Inlet Temp	730 °C	
Mass	15.5 kg (22 W _e /kg)	

- Closed Brayton continuous flow cycle with recuperation
- Scaled-down from previous designs
- Life-limiting engineering : Hot-end material creep from centrifugal stress
- Recuperator is large portion of convertor mass
- Two counter-rotating units permits redundancy, and nullifies angular momentum
- Flexible component placement on spacecraft

Thermo-Acoustic Power Convertor (TAPC)

Northrop Grumman Aerospace Systems

110 W_e Thermo-Acoustic Power Convertor (TAPC)

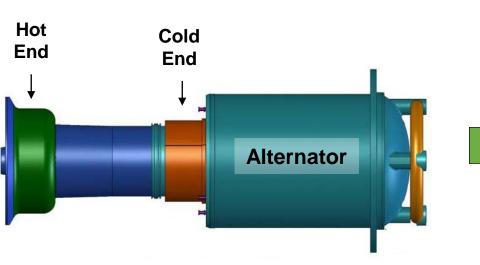
TAPC Characteristics

Power Output	110 W _e
Efficiency	26% @ T _{COLD} =100°C
Fraction of Carnot	0.42
Hot-End Temp	700 °C
Mass	6.4 kg (17 W _e /kg)

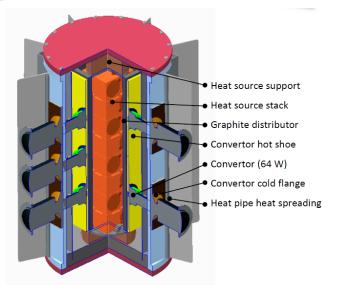
- Thermoacoustic Stirling cycle
- Eliminates physical displacer (no moving parts in hot end)

Notional 220 W_e generator concept with 100% convertor redundancy

- Natively balanced, dual-opposed alternator building block
- Alternators driven by shared compression space
- Based on previous development efforts: 2003 NRA, IRAD-developed device



Sunpower Robust Stirling Convertor (SRSC)


Sunpower, Inc.

65 W_e Sunpower Robust Stirling Convertor (SRSC)

Notional 500 W_e generator concept with 25% convertor redundancy

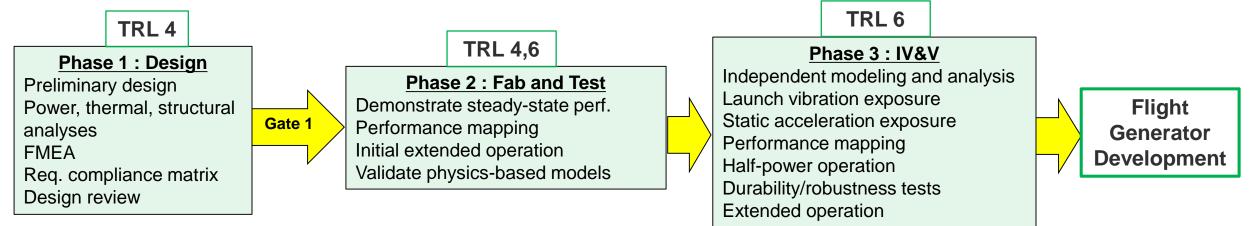
SRSC Characteristics

Power Output	65W _e
Efficiency	29% @ T _{COLD} =100°C
Fraction of Carnot	0.46
Hot-End Temp	720 °C
Mass	2.0 kg (33 W _e /kg)

- Gas-bearing based, beta arrangement free-piston Stirling convertor
- Derivative of Advanced Stirling Convertor (ASC) from ASRG Project
- Enables wide generator design space
- Design deltas relative to ASC to improve the following:
- 1. Higher radial gas bearing stiffness, overstroke tolerance
- 2. Regenerator robustness, debris tolerance
- 3. Higher cold-end temp and static acceleration capability

Path to Flight

Goal:


Achieve convertor TRL 6, then initiate generator flight development

NASA definition of TRL 6: "System/subsystem model or prototype demonstration in a relevant environment (ground or space)"

Relevant environments can be simulated

Surrogate Mission Team (SMT), chartered by RPS Program

- NASA, DOE, JPL, APL, GSFC
- Formulated requirements to provide mission pull
- Integrated with convertor contract progress monitoring
- Formulated a TRL evaluation method
- Providing failure mode and probability of success analysis
- Work phases and deliverables tied to TRL advancement

1

0.9

Generator Reliability .0 8

0.6

0.5

First Mission Potential

First flight-mission use of any new conversion technology must accept some risk

20 year life requirement is atypical

- Demonstrating 2x life via experiment is not realistic
- Statistical reliability analysis will have small number of hardware data points
- Fabrication of tens of hardware data points not possible on current timeline
- Convertor-level accelerated testing not possible
- Convertor component accelerated testing is possible
- Convertor redundancy has significant effect on generator reliability
 - R=0.9 R=0.8 R=0.5

Convertor Redundancy

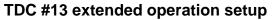
Lunar mission is an attractive first use

- Short cruise time (days, not years)
- Short mission duration (2 years instead of 20)
- Significant science return
- Many candidate missions enabled or enhanced by nuclear power

Stirling Convertor Reliability Demonstrations

NASA GRC has demonstrated zero-degradation long-term operation of several flight-relevant convertors

Project & Provider	Test Article	Bearing Technology	Years of Operation	Status
	TDC #13 ¹		12.6	On-going
SRG-110	TDC #14	Flexure	12.1	Shutdown for disassembly and inspection
Infinia, Corp.	TDC #15		11.6	On-going
minia, corp.	TDC #16		11.6	On-going
	SES #2 ²		0.3	On-going
	ASC-0 #3 ²		8.3	On-going
	ASC-E3 #3		2.5	Shutdown for disassembly and inspection
ASRG	ASC-E3 #4 ²		3.1	On-going
Sunpower,	ASC-E3 #6 ²	Gas	2.4	On-going
Inc.	ASC-E3 #8		1.9	On-going
	ASC-E3 #9		1.6	On-going
	ASC-L ²		4.0	On-going

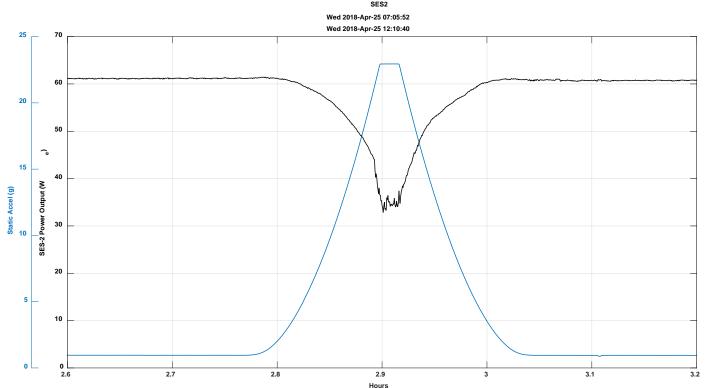

Cumulative Per-Convertor Runtime as of June 2018

¹Current record-holder for maintenance-free heat engine runtime ²Have undergone random vibe portion of life certification

TDC #14 disassembled and inspected after 12 years of operation:

- No evidence of degradation
- Robustness demonstrated
- Tolerated debris, oxygen ingress, and overstroke
- Further disassembly commencing
- Will enable inspection of regenerator and flexure bearings
- ASC-E3 #3 will also be disassembled




ASC-E3 Pair Extended Operation Test Article

Static Acceleration Exposure

NASA GRC recently characterized flexure-bearing convertor under static acceleration environment (20g for 1 minute)

SES #2 setup in centrifuge for static acceleration exposure to 20g

Results : Temporary reduction in convertor power output Convertor returned to extended operation to track long-term performance

Conclusions and Next Steps

NASA's dynamic power convertor development in support of high-efficiency RPS is progressing as planned, and shows promise

- 3 DPC contracts have passed Decision Gate 1, and have been awarded Phase 2 (convertor prototype fabrication and test)
- NASA GRC is preparing for DPC prototype IV&V, ~2020
- Ongoing research utilizing existing hardware supports viability of dynamic power conversion for RPS
- Next steps:
 - 1. Finalize convertor IV&V plan
 - 2. Burn down risks
 - 3. Develop generator development path