
Turboelectric and Hybrid Electric Aircraft 
Drive Key Perfomance Parameters

Dr. Kirsten P. Duffy – University of Toledo

Ralph H. Jansen – NASA Glenn Research Center

AIAA Electric Aircraft Technologies Symposium 1July 13, 2018



AIAA Electric Aircraft Technologies Symposium 2

Background
Hybrid Electric and Turboelectric Aircraft Propulsion

Partially Turboelectric

NASA STARC-ABL

Fully Turboelectric

NASA N3-X

Hybrid Electric – NASA PEGASUS
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• High Bypass Ratio (BPR)
• Enabled by de-coupling the shaft speeds and inlet/outlet areas

• 4-8% improvement in propulsive efficiency expected for fully 
turboelectric propulsion (Felder, Brown)

• Boundary Layer Ingestion (BLI)
• Reduces drag by reenergizing the wake

• 3-8% improvement in propulsive efficiency expected for fully 
turboelectric propulsion (Felder, Brown)

• Lift-to-Drag (L/D) Improvements
• Distributed propulsion improves wing flow circulation control

• Up to 8% improvement expected (Wick)
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Electrified Aircraft Propulsion Benefits
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• Electric Drive System
• Electric machines

• Generators
• Motors

• Power management and distribution
• Rectifiers
• Inverters
• Distribution wiring
• Fault protection

• Thermal system
• Related to electric drive system losses

• Performance – STARC-ABL assumptions
• MW-class motor and generator with at least 13 kW/kg and h = 96% 
• Rectifiers and inverters with 19 kW/kg and h = 99%
• Stackup yields overall values of 2 kW/kg and h = 90%

• Input energy
• Fuel energy density ~12,000 Wh/kg
• Li-ion specific energy on the cell level of up to 200 Wh/kg
• New battery technologies (Li-sulfur, Li-air) projected to be up to 750-1000 Wh/kg
• Need to be de-rated from cell level to battery pack specific energy
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Electrified Aircraft Propulsion Costs
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NASA HEMM Motor Concept
with h > 98% (Jansen et al. 2018)
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Background
Electrified Aircraft Propulsion Systems

Baseline Turbofan Fully Turboelectric

Partially Turboelectric
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Parallel Hybrid Electric



• Key Performance Parameters
• Electric propulsion fraction x

• Electric drive efficiency helec

• Electric drive specific power Spelec

• Battery specific energy Sebatt

• Breakeven assumptions
• Range is the same

• The input energy is the same

• Other assumptions
• Payload weight is the same

• OEW/Initial weight is the same (OEW does not include electric 
drive system or battery weight)
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KPPs and Assumptions
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Range Equation

Set range of conventional aircraft and electrified aircraft equal
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𝑔

𝐿

𝐷
𝜂o ln

𝑊i
𝑊f

𝑅batt =
𝑆𝑒batt
𝑔

𝐿

𝐷
𝜂o

𝑊batt
𝑊i

July 13, 2018



AIAA Electric Aircraft Technologies Symposium 8

Range Equation

Set range of conventional aircraft and electrified aircraft equal
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For small Wfuel/Wi :
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Breakeven Analysis
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Baseline Inputs:
(L/D hprop htherm)AC

WfuelAC/WiAC

Electrified Aircraft 
Inputs:

(L/D hprop htherm)E

Equal Range
WfuelE/WiE Equal Input 

Energy

WiE/WiAC Component 
Weights

Welec/WiE

Welec

Definition

Spelec

helec, x, 

Sebatt WbattE/WiE
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Turboelectric Aircraft

July 13, 2018

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 10 15 20

E
le

ct
ri

c 
D

ri
v
e 

E
ff

ic
ie

n
cy

 h
el

ec

Electric Drive Specific Power Spelec

(kW/kg)

Fuel Savings 
above this line



AIAA Electric Aircraft Technologies Symposium 11

Turboelectric Aircraft
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NASA N3-X Turboelectric Example

Ref: Felder, Brown, Kim, and Chu, “Turboelectric distributed propulsion in a hybrid wing body aircraft” 2011
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Parameter Baseline 777
(tube and wing)

Baseline N3A 
(HWB)

Turboelectric 
N3-X (HWB)

L/D 19 22 22
hprop 69.6% 72.2% 77.1%
Spelec (kW/kg) 7.1

helec 98.54%
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NASA N3-X Turboelectric Example
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Baseline 777 
vs Turboelectric N3-X

Baseline N3A HWB 
vs Turboelectric N3-X
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Partially Turboelectric STARC-ABL Example

Parameter Baseline N3CC
Partially 

Turboelectric 
STARC-ABL

x 45%

L/D 21.4 22.3

hprop 64% 75.1%

Spelec (kW/kg) 2.0 kW/kg

helec 90%

Ref: Welstead and Felder, “Conceptual design of a single-aisle turboelectric commercial transport with 
fuselage boundary layer ingestion”
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Partially Turboelectric STARC-ABL Example
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Parallel Hybrid Electric PEGASUS Example

Parameter
Baseline

Turboprop
Parallel Hybrid 

Electric

x 25%, 50%, 75%

L/D 11 15

hprop 60% 72%

Sebatt (Wh/kg) 500, 750, 1000

Spelec (kW/kg) 7.3 

helec 90%

Ref: Antcliff et al., “Mission analysis and aircraft sizing of a hybrid-electric regional aircraft,” 2016
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Parallel Hybrid Electric
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Parallel Hybrid Electric
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Constant Benefits:
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Shorter Range, Sebatt = 750 Wh/kg
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Parallel Hybrid Electric
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Constant Benefits
Electric Drive Weight Ratio

Constant Benefits
Battery Weight Ratio

Shorter Range, Sebatt = 750 Wh/kg
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Parallel Hybrid Electric
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Constant Benefits
Hybrid Electric to Baseline Weight Ratio

Shorter Range
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Parallel Hybrid Electric
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x = 25%



• All Aircraft:
• Higher electric drive specific power yields diminishing returns
• Analysis is sensitive to propulsive benefit assumptions and to 

component weight assumptions

• Parallel Hybrid Electric:
• Dominated by the battery specific energy
• Better suited to shorter range
• Needs improvement in battery specific energy
• Constant benefits – sensitive to electric propulsion fraction because of 

battery weight
• Scaled benefits – relaxes required electric drive performance
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Conclusions
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