

Preliminary Design of the Superconducting Rotor for NASA's High-Efficiency Megawatt Motor

Dr. Justin Scheidler

NASA Glenn Research Center Materials and Structures Division Rotating and Drive Systems Branch

2018 AIAA Propulsion & Energy Forum Cincinnati, OH July 10, 2018

www.nasa.gov

Preliminary Design of the Superconducting Rotor for NASA's High-Efficiency Megawatt Motor

Motivation

- Reduced energy consumption, emissions, and noise of commercial transport aircraft [1]
 - Electrified aircraft propulsion (EAP) enables system-level benefits to these metrics
- EAP concepts require advances to electric machines
- NASA's High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA's STARC-ABL concept

	STARC-ABL		
	Electric machines	Current design	With HEMM
	Specific power, kW/kg	13.2	16
STARC-ABL	Efficiency, %	96	98 to 99
STARC-ABL	Perfor	rmance relative to STARC-ABL rev A	With HEMM
		Fuel burn, %	−1 to −2
	Wast	e heat in generator	½ to ¼ (−30 to −44 kW)

NASA's High-Efficiency Megawatt Motor (HEMM)

- Sized for generator of NASA's STARC-ABL concept
- Wound-field synchronous machine
 - Tolerant of stator fault
- Superconducting rotor
 - Negligible energy loss
 - Very strong magnetic excitation

Parameter	Value
Rated continuous power	1.4 MW
Nominal speed	6,800 rpm
Tip speed	Mach 0.31
Rated torque	2 kNm
Specific power goal	16 kW/kg
Efficiency goal	>98 %

Outline

This talk

- Complete preliminary design package for rotor
 - Electromagnetic design & optimization
 - Rotor containment design & stress analysis

Talk 2 (Scheidler & Tallerico, 2018 EATS)

- Overview of current rotor design
- Fabrication & testing of sub-scale superconducting rotor coils

Outline

- Electromagnetic design & optimization
 - Thermal requirements
 - Optimization of rotor coil's geometry
 - Optimization of back iron geometry
- Rotor containment design & stress analysis
- Conclusions

Superconductor selection & form factor

Parameter	Value
Electrical frequency	DC
Number of poles	12
Stator configuration	Slotless
Rotor outer diameter	30 cm
Air gap	4 cm
Axial length	12.5 cm

- REBCO is a composite conductor in the form of Cu-coated thin tape
- No-insulation (NI) coils selected [9-11]
 - Fault tolerant
 - Higher engineering current density
 - Higher mechanical strength

- 2nd generation high temperature superconductor (REBCO) selected
 - Commercially available in long piece length
 - Sufficient performance at "high" temperatures in moderately strong magnetic environments

Self protection via no turn-to-turn insulation

National Aeronautics and Space Administration

Superconductor current & thermal limits

- Critical current $(I_C) = I_C(T, B, \theta)$
 - Datasheet values $\theta = 0^{\circ}$ and 90° are insufficient
- Datasheet specs de-rated twice: angular dependence & safety factor

Safety factor

 $\pm 20\%$ Estimate of wire variation

+ ±15% Modeling inaccuracy

±35% (≈1.5 safety factor)

National Aeronautics and Space Administration

Superconductor current & thermal limits

Measurements at our operating condition obtained from manufacturer

Optimization of rotor coil's geometry

- Optimized coil's geometry for a given iron thickness & width by numerically maximizing # of turns
 - Rectangular coil cross section
 - Also outputs total length & cost of conductor, mass of iron+coil
 - 4 mm is optimal width of superconductor

Soft magnetic material (back iron)

Region available for containment structure & clearances

Optimization of rotor coil's geometry

Optimization of back iron geometry

- Custom extrapolation derived for Hiperco 50A's *B* vs *H* response
- Mesh refinement study completed
- Results consistent with 2D MotorSolve

		MotorSolve	COMSOL	% difference
	Current, A	75	75	-
	A-Turns in coil	37500	37500	-
Avg. radial	Rotor surface, T	1.999	1.9729	1.31%
flux density	Stator surface, T	0.9028	0.8620	4.62%
N	lax. flux density, T	4.14	4.04	2.44%

Optimization of back iron geometry – 2D FEA

- Parametric study of iron and coil geometry
- COMSOL electromagnetic simulation
 - 2D and 3D
 - Nonlinear, static
 - No stator current

Optimization of back iron geometry - 2D FEA

- Minimize rotor iron
 width & thickness
 (maximize A-Turns)
 - Diminishing returns due to magnetic saturation
- Constrained by max B
 in coil
- Performance & performance per mass have opposite trends than performance per cost

Optimization of back iron geometry – 3D FEA

Optimization of back iron geometry – 3D FEA

- Preliminary design
 - Max rotor temp. = 62.8 K
 - HTS tape = 4 mm x 65 micron
 - Rotor thickness = ~2.6 cm
 - Rotor tooth width = ~3.3 cm
- Length of HTS wire needed
 - Each coil: ~250 m
 - Total wire length: 3150 m
- Estimated total cost of HTS wire
 - \$200K = 3150 m * \$60/m
 - + 5% margin

v1 design	v2 (preliminary) design	% change
75 A	51.5 A	- 31%
60 K	62.8 K	+ 5%
0.94 T @ air gap	0.96 T @ air gap	+ 2%
346 A-turns/kg	738 A-turns/kg	+ 113%
2.0 T in HTS	1.99 T in HTS	0%

Outline

- Electromagnetic design & optimization
 - Thermal requirements
 - Optimization of rotor coil's geometry
 - Optimization of back iron geometry
- Rotor containment design & stress analysis
- Conclusions

Rotor containment design & stress analysis

- Only centrifugal force considered for preliminary design
 - Neglected forces: thermal, magnetostrictive, electromagnetic
- Rotor *B* variation minimal
 - \rightarrow magnetostriction < 6e-6 m/m
 - → magnetostrictive forces are negligible
- Mechanical contact modeling is critical

Rotor containment design & stress analysis

• Wide range of fixture designs considered

'fir tree' teeth

National Aeronautics and Space Administration

Preliminary Design of the Superconducting Rotor for NASA's Hig

Preliminary design – double dovetail rotor teeth

Assembly of the rotor

Preliminary design – stress analysis

Outline

- Electromagnetic design & optimization
 - Thermal requirements
 - Optimization of rotor coil's geometry
 - Optimization of back iron geometry
- Rotor containment design & stress analysis
- Conclusions

 Uninsulated superconducting coils offer significant benefits, but are unproven in rotor applications

Electromagnetic design & optimization

- 2D FEA trends nearly mirror coil's A-turns until back iron is magnetically saturated
- Performance & performance per mass have opposite trends than performance per cost
- 3D FEA performance ~7% lower than 2D, but max flux density in coil approx. the same

Rotor containment design & stress analysis

- Containment design is very challenging when pole count is relatively high & structure cannot reside in the air gap
- Double dovetail rotor teeth provide satisfactory stress margin, but may not have adequate thermal conductance

Considerable risks remain – further analysis & sub-scale testing is needed

Acknowledgements

- NASA Advanced Air Transport Technology (AATT) Project
 - Hybrid Gas-Electric Propulsion Sub-project

References

- Jansen, R., Bowman, C., Jankovsky, A., Dyson, R., and Felder, J., "Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports," 53rd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, Atlanta, GA, AIAA 2017-4701, 2017. doi:10.2514/6.2017-4701.
- [9] Hahn, S., Park, D. K., Bascuñán, J., and Iwasa, Y., "HTS pancake coils without turn-to-turn insulation," *IEEE Transactions on Applied Superconductivity*, Vol. 21, No. 3, 2011, pp. 1592–1595. doi:10.1109/TASC.2010.2093492.
- [10] Song, J.-B., Hahn, S., Lécrevisse, T., Voccio, J., Bascuñán, J., and Iwasa, Y., "Over-current quench test and self-protecting behavior of a 7 T/78 mm multi-width no-insulation REBCO magnet at 4.2 K," *Superconductor Science and Technology*, Vol. 28, No. 11, 2015, p. 114001. doi:10.1088/0953-2048/28/11/114001.
- [11] Hahn, S., Radcliff, K., Kim, K., Kim, S., Hu, X., Kim, K., Abraimov, D. V., and Jaroszynski, J., "Defect-irrelevant' behavior of a no-insulation pancake coil wound with REBCO tapes containing multiple defects," *Superconductor Science and Technology*, Vol. 29, No. 10, 2016, p. 105017. doi:10.1088/0953-2048/29/10/105017.

National Aeronautics and Space Administration

Preliminary Design of the Superconducting Rotor for NASA's High-Efficiency Megawatt Motor

Rotor coil sizing study

Characteristic/parameter	Value
Superconductor width, mm	4
Superconductor thickness, μm	65
Min. superconductor bend radius, mm	15
Max. magnetic flux density in the superconductor, T	2
Rotor coil gap g_1 , mm	1.3
Rotor coil gap g_2 , mm	1.0
Rotor coil gap g_3 , mm	1.3
Rotor coil gap g_4 , mm	1.3

Cryogenic yield strength of Fe₄₉Co₄₉

- [1] measured yield strength of Fe₄₉Co₄₉V₂ (Hiperco 50) at cryo temperatures for different grain sizes
- Yield strength increases by about 90% to 110% going from room temp to 77 K
 - Material is brittle at about 150 K and lower
- Effect of trace elements (Hiperco 50A vs 50 vs 50HS) is small [2]
- Thus, 'failure' strength for Hiperco can be increased by 90%

Material	Temp., K	'Failure' strength, MPa
Hiperco 50A	293	365
after annealing	77	694 (estimate)

1. Jordan, K. & Stoloff, N., Trans. Metal. Soc. AIME 245, p. 2027-2034, 1969.

2. Sourmail, T., Prog. Mater. Sci. 50(7), 2005. (doi: 10.1016/j.pmatsci.2005.04.001)