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Motivation

STARC-ABL

• Reduced energy consumption, emissions, and noise of commercial transport aircraft [1]

• Electrified aircraft propulsion (EAP) enables system-level benefits to these metrics

• EAP concepts require advances to electric machines

• NASA’s High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA’s STARC-ABL 

concept

Electric machines

STARC-ABL

Current design With HEMM

Specific power, kW/kg 13.2 16

Efficiency, % 96 98 to 99

Performance relative to

STARC-ABL rev A
With HEMM

Fuel burn, % –1 to –2

Waste heat in generator
½ to ¼

(–30 to –44 kW)
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• Sized for generator of NASA’s STARC-ABL concept

• Wound-field synchronous machine

• Tolerant of stator fault

• Superconducting rotor

• Negligible energy loss

• Very strong magnetic excitation

NASA’s High-Efficiency Megawatt Motor (HEMM)

Parameter Value

Rated continuous power 1.4 MW

Nominal speed 6,800 rpm

Tip speed Mach 0.31

Rated torque 2 kNm

Specific power goal 16 kW/kg

Efficiency goal >98 %

Copper stator

(> room temperature)
Superconducting rotor 

coils & core (< 77 K)

Rotating cryocooler

Rotor
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Outline

This talk

• Complete preliminary design 

package for rotor

• Electromagnetic design & optimization

• Rotor containment design & stress 

analysis

Talk 2 (Scheidler & Tallerico, 2018 EATS)

• Overview of current rotor design

• Fabrication & testing of sub-scale 

superconducting rotor coils
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Outline

• Electromagnetic design & optimization

• Thermal requirements

• Optimization of rotor coil’s geometry

• Optimization of back iron geometry

• Rotor containment design & stress analysis

• Conclusions
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Superconductor selection & form factor

• REBCO is a composite conductor in the form 

of Cu-coated thin tape

• No-insulation (NI) coils selected [9-11]

• Fault tolerant

• Higher engineering current density

• Higher mechanical strength

Parameter Value

Electrical frequency DC

Number of poles 12

Stator configuration Slotless

Rotor outer diameter 30 cm

Air gap 4 cm

Axial length 12.5 cm

Non-superconducting 

(“normal”) region

Current path

Self protection via no turn-to-turn insulation

.

• 2nd generation high temperature superconductor 

(REBCO) selected

• Commercially available in long piece length

• Sufficient performance at “high” temperatures 

in moderately strong magnetic environments
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Safety factor

±20%

+ ±15%

±35% (≈1.5 safety factor)

Estimate of wire variation

Modeling inaccuracy

Superconductor current & thermal limits

• Critical current (𝐼𝐶) = 𝐼𝐶 𝑇, 𝐵, 𝜃

• Datasheet values 𝜃 = 0° and 90° are insufficient

• Datasheet specs de-rated twice:  angular dependence & safety factor

Manufacturer data
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Temperature
High performance tape (191 A @ ~0 T) Standard tape (150 A @ ~0 T), calculated

nominal 𝐼𝑐, A min 𝐼𝑐 𝜃 , A min 𝐼𝑐 𝜃 , A

50 K 249.4 x 155.0

65 K 127.1 x 67.8

77 K 28.9 x 16.5

Avg. ↓ 

of 27%

• Measurements at our operating condition obtained from manufacturer

Design spec

current

temperature

51.5 A

≤ 62.8 K

Superconductor current & thermal limits

Valid 

operating 

regime

lift factor
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Optimization of rotor coil’s geometry

• Optimized coil’s geometry for a given iron 

thickness & width by numerically maximizing # 

of turns

• Rectangular coil cross section

• Also outputs total length & cost of 

conductor, mass of iron+coil

• 4 mm is optimal width of superconductor

Soft magnetic material (back iron)

Region available for containment 

structure & clearances

15°

A

B

w

t
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Optimization of rotor coil’s geometry
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Data from 

manufacturer

𝑀 =
𝐵

𝜇0
−𝐻

Curve fit, extrapolate

𝐵 = 𝜇0 𝐻 +𝑀

Calculate from 

extrapolation

Optimization of back iron geometry

• Custom extrapolation derived for 

Hiperco 50A’s 𝐵 vs 𝐻 response

• Mesh refinement study completed

• Results consistent with 2D 

MotorSolve

MotorSolve COMSOL % difference

Current, A 75 75 -

A-Turns in coil 37500 37500 -

Avg. radial 

flux density

Rotor surface, T 1.999 1.9729 1.31%

Stator surface, T 0.9028 0.8620 4.62%

Max. flux density, T 4.14 4.04 2.44%



National Aeronautics and Space Administration Preliminary Design of the Superconducting Rotor for NASA’s High-Efficiency Megawatt Motor 12

Optimization of back iron geometry – 2D FEA

• Parametric study of iron and coil 

geometry

• COMSOL electromagnetic 

simulation

• 2D and 3D

• Nonlinear, static

• No stator current
Design 

space

backiron

coil
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Optimization of back iron geometry – 2D FEA

• Trends nearly mirror 

coil’s A-turns

• Minimize rotor iron 

width & thickness 

(maximize A-Turns)

• Diminishing returns 

due to magnetic 

saturation

• Constrained by max 𝐵
in coil

• Performance & 

performance per mass 

have opposite trends 

than performance per 

cost
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Optimization of back iron geometry – 3D FEA

3D parametric 

study points

Max. flux density 

in rotor coil

Avg. radial flux 

density at stator
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Optimization of back iron geometry – 3D FEA

v1 design v2 (preliminary) design % change

75 A 51.5 A – 31%

60 K 62.8 K + 5%

0.94 T @ air gap 0.96 T @ air gap + 2%

346 A-turns/kg 738 A-turns/kg + 113%

2.0 T in HTS 1.99 T in HTS 0%

• Preliminary design

• Max rotor temp. = 62.8 K

• HTS tape = 4 mm x 65 micron

• Rotor thickness = ~2.6 cm

• Rotor tooth width = ~3.3 cm

• Length of HTS wire needed

• Each coil: ~250 m

• Total wire length: 3150 m

• Estimated total cost of HTS wire

• $200K = 3150 m * $60/m

+ 5% margin
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Outline

• Electromagnetic design & optimization

• Thermal requirements

• Optimization of rotor coil’s geometry

• Optimization of back iron geometry

• Rotor containment design & stress analysis

• Conclusions
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Rotor containment design & stress analysis

• Only centrifugal force considered 

for preliminary design

• Neglected forces: thermal, 

magnetostrictive, 

electromagnetic

• Rotor 𝐵 variation minimal

 magnetostriction < 6e-6 m/m

 magnetostrictive forces are 

negligible

• Mechanical contact modeling is 

critical
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bolted fixtures

‘fir tree’ fixtures

‘fir tree’ teeth

Rotor containment design & stress analysis

• Wide range of fixture designs considered
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double dovetail 

heat 

extraction 

tab

continuous 

shoulder

Preliminary design – double dovetail rotor teeth

Part Material

back iron Hiperco 50 A

Coil 

fixture

Sialon (SiN + Al2O3)

SiC

SupremEx 640XA (Al 6061 + SiC powder)

Ti-6Al-6V-2Sn
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Assembly of the rotor
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SupremEX 640XA fixture SupremEX 640XA fixture SupremEX 640XA fixture

Fixture material

Superconductor Hiperco 50 A Fixture

‘Failure’ 

strength, 

MPa

Max von 

Mises stress, 

MPa

Margin

‘Failure’ 

strength, 

MPa

Max von 

Mises stress, 

MPa

Margin

‘Failure’ 

strength, 

MPa

Max von 

Mises stress, 

MPa

Margin

SiC

>550

183 2.01

694

(@ 77 K, 

approx.)

480 0.45 550 462 0.19

Sialon

(SiN + Al2O3) 
191 1.88 483 0.44 760 391 0.94

SupremEX 640XA

(Al 6061 + SiC powder)
209 1.63 467 0.49 560 236 1.37

Ti-6Al-6V-2Sn 239 1.30 516 0.34 1210 338 2.58

Preliminary design – stress analysis
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Outline

• Electromagnetic design & optimization

• Thermal requirements

• Optimization of rotor coil’s geometry

• Optimization of back iron geometry

• Rotor containment design & stress analysis

• Conclusions
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Conclusions

• Uninsulated superconducting coils offer significant benefits, but are unproven in rotor 

applications

Electromagnetic design & optimization

• 2D FEA trends nearly mirror coil’s A-turns until back iron is magnetically saturated

• Performance & performance per mass have opposite trends than performance per cost

• 3D FEA performance ~7% lower than 2D, but max flux density in coil approx. the same

Rotor containment design & stress analysis

• Containment design is very challenging when pole count is relatively high & structure 

cannot reside in the air gap

• Double dovetail rotor teeth provide satisfactory stress margin, but may not have 

adequate thermal conductance

Considerable risks remain – further analysis & sub-scale testing is needed
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Rotor coil sizing study 

Soft magnetic material (back iron)

Region available for containment 

structure and clearances

15°

A

B

w

t
𝑔1

𝑔3

𝑔2

𝑔4
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• [1] measured yield strength of Fe49Co49V2 (Hiperco 50) at cryo temperatures for different grain 

sizes

• Yield strength increases by about 90% to 110% going from room temp to 77 K

• Material is brittle at about 150 K and lower

• Effect of trace elements (Hiperco 50A vs 50 vs 50HS) is small [2]

• Thus, ‘failure’ strength for Hiperco can be increased by 90%

1. Jordan, K. & Stoloff, N., Trans. Metal. Soc. AIME 245, p. 2027-2034, 1969.

2. Sourmail, T., Prog. Mater. Sci. 50(7), 2005. (doi: 10.1016/j.pmatsci.2005.04.001)

Cryogenic yield strength of Fe49Co49

Material Temp., K ‘Failure’ strength, MPa

Hiperco 50A

after annealing

293 365

77 694 (estimate)


