

INTEGRATION OF MULTILEVEL SUPERCONDUCTING BURIED WIRING LAYERS WITH TRANSITION-EDGE SENSOR DETECTORS FOR LARGE SCALE ARRAYS

Aaron M. Datesman^{1,2}, Joseph S. Adams^{1,3}, Simon R. Bandler¹, Vladimir Bolkhovsky⁴, Meng-Ping Chang^{1,2}, James A. Chervenak¹, Natalie S. DeNigris^{1,5} Megan E. Eckart⁶, Audrey J. Ewin¹, Fred M. Finkbeiner^{1,7}, Jong Yoon Ha^{1,8}, Richard L. Kelley¹, Caroline A. Kilbourne¹, Jeffrey Mendenhall⁴, Antoine R. Miniussi^{1,3}, Frederick S. Porter¹, Kevin Ryu⁴, John E. Sadleir¹, Kazuhiro Sakai^{1,3}, Stephen. J. Smith^{1,3}, Nicholas A. Wakeham^{1,3}, Edward J. Wassell^{1,2}

(1) NASA Goddard Space Flight Center, Greenbelt, MD USA (2) Stinger-Ghaffarian Technologies, Inc., Greenbelt, MD USA (3) University of Maryland Baltimore County, Baltimore, MD USA (4) MIT Lincoln Laboratory, Lexington, MA USA 2EPo2D-08 (5) University of Massachusetts Dept. of Astronomy, Amherst, MA, USA (6) Lawrence Livermore, CA USA (7) Sigma Space Corp., Lanham, MD USA (8) SB Microsystems, Inc., Glen Burnie, MD USA

SECOND ITERATION: LYNX PROTOTYPE

FIRST ITERATION CHARACTERIZATION

Intrinsic T_C of Mo/Au bilayer was about 200 mK. Increased Tc due to the Nb patch was observed, which is consistent with the SOLAR-E results. The experiment demonstrated that the series via resistance was about 20 m Ω for Design 1, and 7 m Ω for Design 2. The result is consistent with

The R(T) curves agreed for 12 µm devices with different via designs when both possessed the Nb patch, which short-circuited the via resistance. • Zero-bias measurement using SQUID electronics shows elevated critical temperature for all sizes – moreso for 7 µm TES – with no discernible

FIRST ITERATION X-RAY TESTING RESULTS

Size (µm)	$R_{n}(m\Omega)$	T _C (mK)	Nb Patch
7		700	
7	14	730	Y
8		470	
8	20	500	Ν
9	20	500	Ν
9	20	520	N
12	14	500	Y
12	14	500	Y

Low-Excitation Measurement

• Using an 8 µm TES with via Design 1, we report an energy resolution of 1.12 eV for Al K α and 1.93 eV for Mn K α , as

The initial results indicate that a detector with a critical temperature of 65 mK utilizing a 1 micron thick absorber would demonstrate a desirable energy resolution of 0.2 eV at 1 keV. X-ray testing of Lynx prototype devices (from the second iteration) is underway.