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The research and development of UAVs are quickly
progressing as industries and hobbyist societies recognize
their utility. NASA is focused on the technology
development and safety considerations surrounding
commercial use of UAV. Urban SAFE50 is focused on the
necessary real-time decision algorithms and flight models
prevalent in low-altitude, high-density city environments.
Construction of on-board controls to respond to motor
failure and wind dynamics as well as a database of
computational flight models and battery discharge profiles
will help policymakers to predict and regulate unmanned
aircraft flight safely and effectively.

Multidisciplinary Aeronautics Research Team Initiative

MARTI is a 10-week immersive and intensive summer
program that focuses on leadership, teamwork, and
research in advanced technology and engineering.
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What is SAFE 50?

Safe Autonomous Flight Environment within the notional
last 50 ft of operation of 55 Ib class UAS. SAFE 50
addresses an aspect of UTM technologies to enable safe
scenarios.
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Computational Fluid Dynamics of Rotorcraft Vehicles

RotCFD is being utilized in order to examine rotorcraft
vehicles in hover and forward flight, in and out of ground
effect. This will allow for characterization of their
environmental interactions, and allow for more efficient
platform design.

Forward Flight

Figure 3 Initial grid setup for hover and forward flight. Depicted in each is
the local refinement, which helps ensure a robust, accurate solution.
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Figure 4 Initial velocity profiles of IRIS+ hovering in low speed wind (5
mph).

In order to better design not only the UAS, but the safety
aspects around their operations, a complete understanding
of the environments in which they operate is necessary.

Figure 6 A 3D model of NASA Ames, which is being used for initial wind
profile estimate through CFD analysis.

Controls for Motor Failure

When a Motor is lost, the multi rotor system will quickly
lose control and spiral out of the sky unless the failure is
discovered quickly and appropriate action is taken.
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Figure 7 Simulink Model: simulates multicopter dynamics and lends
intuition for understanding the interaction between control theory and
actuality.
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Figure 8 Control Matrix: By inverting the control matrix in the middle, we
can solve for the individual motor forces (far right vector). When a motor
failure is detected, we alter the control matrix before inverting. Before the
device lifts off, a control matrix for every contingency is calculated.

Euler Angles Over Time
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Figure 9 Simulation Results: This figure shows the Euler angles of the
quadcopter over time. At 10 seconds, a motor fails and the control system
is modified to control the quadcopter by sacrificing yaw. As expected, the
roll and pitch angles settle while the yaw goes off to infinity.

Modeled Current with Prop Failure
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Figure 10 Hardware:

(a) This quadrotor was built by our mentors to test their motor failure
protocol. We will be integrating our work into its flight controller to test
our motor failure work.

(b) This figure shows how the current model changes when a propeller
flies off of its motor. At 10 seconds, the current drops rapidly because
there is no aerodynamic drag on the motor anymore.

Battery Prognostics
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Electric UAVs need to have reliable energy systems in
order to ensure the best opportunity for safe flight.
Assessing battery conditions throughout flight
simulations and modeling an energy storage fault tree
analysis may help determine UAV protocol during failure
events.

Iris+ Lithium Polymer Battery Prognostics

e Code Tl Systems health, analytics, resilience, and physics modeling
(SHARP) laboratory

Characterize failure modes and fault tree analysis

Battery certification protocol

Figure 11 Iris+ batter and 2A Disgharge Profile on MACCOR.

Integration Environment: Reflection

NASA Reflection simulation software will be utilized to as
the validation environment along with hardware testing
with the Iris+ in order to integrate CFD modeling,
intelligent controls, and battery prognostics.
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Figure 12 NASA developed software program, Reflection running a
flight simulation.
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