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Objectives
Construction of High Order Shock-Capturing Methods to

Improve Predictability & Reliability of Turbulent Simulations



Challenges in Numerical Method Development 
(Multiscale DNS & LES, and Aeroacoustic Turbulence Applications)

• Accurate schemes developed for short time integration might suffer from 
nonlinear instability for longer time integration 

• Numerical stability & accuracy requirements are an intricate balancing act
>  More stable schemes usually contain more numerical dissipation than their higher accuracy 

schemes counterparts
>  Turbulence cannot tolerate numerical dissipation
>  Proper amount of numerical dissipation is required for stability in the vicinity of discontinuities
>  Reacting/combustion flows containing stiff source terms:

- Numerical dissipation & under-resolved grid may lead to incorrect shock speed
- Need well-balanced schemes to preserved certain physical steady states exactly

• DNS & LES of turbulent flows containing both shock-free turbulence, and 
strong shocks & high gradient/shocklets during the entire computational 
time evolution cannot be solved accurately with standard numerical method 
construction

• Forced compressible turbulence can initially start with shock-free 
turbulence and might develop into flows with moderate to strong shock 
waves at a later time evolution (Kotov et al. JCP, 2016)

Stable & Accurate Temporal & Spatial Low Dissipative & Dispersive 
methods applicable to long time integration are required
(Yee & Sjogreen, 2007-2017, Sjogreen & Yee, 2016-2017, Wang et al., 2009-2015,  Kotov et al., 2011-2016)



• Accurate schemes developed for short time integration might 
suffer from nonlinear instability for longer time integration 

• Standard shock-capturing methods are too diffusive for long 
time integration

Numerical Examples
DNS Computations of Smooth Flows & Turbulence with Discontinuities



2D Isentropic Vortex Convection
Translation of initial data exactly if no numerical dissipation added

8th order central (C08) vs. 4 different 8th-order skew-symmetric splittings

C08

Norm of Error vs. Time

Improve numerical stability
for longer time integrations 
by skew-symmetric splittings
(different accuracy)



3D Taylor-Green Vortex (Compressible & Inviscid)
(Comparison of 4 Nonlinear Filter Methods, 643 grids)

Classical Central vs. DRP Central Base Schemes

Kinetic Energy Enstrophy

C08-DS+WENO7fi:  8th-order central + Ducros et al. split +WENO7fi
DRP4S7-DS+WENO5fi:  Tam & Webb 4th-order DRP, 7pt grid stencil + Ducros et al. split +WENO5fi

ST09-DS+WENO7fi:  Bogey & Bailly 4th-order DRP, 9pt grid stencil + Ducros et al. split +WENO7fi
DRP4S9-DS+WENO7fi:  Tam & Webb 4th-order DRP, 9pt grid stencil + Ducros et al. split +WENO7fi



3D Isotropic Turbulence with Shocklets
(Comparison of 4 Nonlinear Filter Methods, 643 grids)

Classical Central vs. DRP Central Base Schemes
Kinetic Energy Enstrophy

Temperature Variance Dilatation



Spurious Numerics Due to Source Terms

Source Terms:  Hyperbolic conservation laws with source terms – Balanced Law
     >  Most high order shock-capturing schemes are not well-balanced schemes 
     >  High order WENO/Roe & their nonlinear filter counterparts are well-balanced for
          certain reacting flows – Wang et al. JCP papers (2010, 2011)

Stiff Source Terms:
>  Numerical dissipation can result in wrong propagation speed of discontinuities

        for under-resolved grids if the source term is stiff (LeVeque & Yee, 1990)
    >  This numerical issue has attracted much attention in the literature – last 20 years
         (Improvement can be obtained for a single reaction case)
    >  A New Sub-Cell Resolution Method has been developed for stiff systems on coarse mesh
         (Wang et al., JCP, 2012)

Nonlinear Source Terms:
    >  Occurrence of spurious steady-state & discrete standing-wave numerical solutions --
        due to fixed grid spacings & time steps (Yee & Sweby, Yee et al., Griffiths et al., Lafon & Yee, 1990 – 2002)

Stiff Nonlinear Source Terms with Discontinuities: 
> More Complex Spurious Behavior

    > Numerical combustion, certain terms in turbulence modeling & reacting flows 



Stiff Source Terms:  Wrong Discontinuity Locations 
(E.g., Grid & method dependence of shock & shear locations)

Note:  Non-reacting flows - Grid & scheme do not affect locations of discontinuities, only accuracy
Implication:  The danger in practical numerical simulation for this type of flow (Kotov et al. JCP, 2015)

(Non-standard behavior observed in non-reacting flows) 



Approach
• Schemes that mimic the property of the chosen governing 

equations
• Schemes that preserve key physical properties
• Schemes that are high order, low dissipation & low 

dispersive error suitable for a wide range of flow speeds 
(require flow sensors to adaptively minimize the dissipation and dispersion 
errors)

• Schemes that are stable, efficient & highly parallelizable 
• Schemes with high order stable discrete numerical 

boundary operators
• Schemes that are applicable for DNS & LES in 3D 

curvilinear spatial & time varying deforming grids 
Yee et al., Yee & Sjogreen, Sjogreen & Yee, Wang et al. and Kotov et al. (1999-2017)



• Skew-Symmetric Splitting of the Inviscid Flux Derivative Before the
Application of Non-Dissipative Centered Schemes

• DRP (Dispersion Preservation-Relation) Schemes as Alternatives to
Classical High Order Central Schemes

• Stable High-Order Entropy Conservative Numerical Fluxes with
Entropy Satisfying Properties - Numerical solution satisfies an additional
discretized conservation law

• Standard High Order Linear Filters are to be Replaced by High Order
Nonlinear Filters

• Smart Flow Sensors to Provide Locations & Amount of Needed
Numerical Dissipation

• Nonlinear Dynamics is Utilized to Complement the Traditional
Linearized Stability Theory

• - Minimize numerically induced false transition to turbulence
• - Minimize numerical instability due to long time integration of turbulent flows
• - Minimize numerically induced standing wave solutions

(Long Time Wave Propagation & Long Time Integration of Complex Compressible Fluids & Plasma)
Methods to Improve Nonlinear Stability & Accuracy

Present short talk summaries red arrow methods



Preprocessing Step:  Improve stability of classical central scheme     
Replacing high order classical central approximation of the inviscid flux derivative è

High order approximation of their split form counterpart

Skew-Symmetric Splitting of Inviscid Flux Derivatives 
(Improve nonlinear stability for high order central schemes)

Olsson & Oliger 1994, Yee et al. 1999, Ducros et al. 2000, Pirozzoli 2009, Sjogreen et al. 2017

• Entropy splitting: Semi-conservative splitting for shock-free turbulence 
(Olsson & Oliger 1994, Yee et al. 1999-2007, Sandham et al. 2002-present)

• Natural Splitting:   Linearized Euler & Non-conservative Systems
• Splitting to Preserve Discrete Momentum and/or Energy Conservation:

(Arakawa 1966, Blaisdell et al. 1996, Mansour 1980, etc.)

• Ducros et al. Type Conservative Splitting:  Euler & MHD (Sjogreen et al. 2017)

• Generalized Skew-Symmetric Splitting:   3-parameter family 
(Pirozzoli 2009)

This talk concentrates only on Ducros et al. type conservative splitting



Ducros et al. Splitting 
(Improve nonlinear stability for high order central schemes)

Split the derivative of a product into conservative & non-conservative parts:

D0: 2nd-order central, D+uj = (uj+1 – uj)/   x 

The above can be generalized to 2pth-order accurate:  Ducros et al. 2000

Approximation of the split form can be written in conservative form:  e.g., 



Ducros et al. Splitting (Cont.) 
(Improve nonlinear stability for high order central schemes)

Approximation of the 2pth-order split form in conservation form:



2pth-order Central Ducros et al. Splitting
Numerical Flux for 3D Gas Dynamics 

3D Inviscid Flux Derivative in x-Direction:

2pth-order Numerical Flux in x-Direction              :



High Order Entropy Conservative Methods

• Numerical solutions satisfy additional discretized conservation law
• Low order entropy conservative methods with linear numerical dissipation for 

shock-capturing require further accuracy improvement
(Tadmor 1984 – gas dynamics; Janhunen 2000 – MHD; Winters & Gassner 2016 – MHD)

• High order entropy conservative methods for central schemes
(Fjordholm et al. (2012) – ENO; Sjogreen & Yee 2016, 2017– central + nonlinear filter, gas dynamics & MHD)

(One way to improve numerical stability & minimize added numerical dissipation)

MHD:
Four forms of the MHD equations to be considered

>  Conservative form 
>  Godunov/Powell symmetrizable form (non-conservative)
>  Janhunen form: (Div B) terms not included in the gas dynamics part of the equations)
>  Brackbill & Barnes form

Three forms of the entropy fluxes to be considered
> Winter & Gassner (2016), Chandrasheka & Klingenbery (2016), Sjogreen & Yee (2016) 



Well-Balanced High Order Nonliner Filter Schemes 
Non-Reacting & Reacting Flows 

Yee et al., 1999-2017, Sjogreen &Yee, 2004-2017, Wang et al., 2009-2010. Kotov et al., 2012-2016

Preprocessing step
Condition (equivalent form) the governing equations by, e.g., Yee et al. Entropy

Splitting & Ducros et al. Splitting to improve numerical stability

High order low dissipative base scheme step (Full time step)
High order Central, DRP, or Entropy Conser. Num. Flux scheme  
SBP numerical boundary closure, matching spatial & temporal order 
conservative metric evaluation Vinokur & Yee, Sjögreen & Yee, Yee & Vinokur 
(2000-2014)

Nonlinear filter step
Filter the base scheme step solution by a dissipative portion of any
positive high-order shock capturing scheme, e.g., 7th-order positive
WENO
Use local flow sensor to control the amount & location of the nonlinear
numerical dissipation to be employed

Well-balanced scheme: preserve certain non-trivial physical steady state solutions of reactive eqns exactly 
Note: “Nonlinear Filter Schemes" not to be confused with “LES filter operation"



Nonlinear Filter Step
Denote the solution by the base scheme (e.g. 6th order central, 4th
order RK)

U∗ = L∗(Un)

Solution by a nonlinear filter step

Un+1
j = U∗j − ∆t

∆x

[
Hj+1/2−Hj−1/2

]
Hj+1/2 = Rj+1/2Hj+1/2

Hj+1/2 - numerical flux, Rj+1/2 - right eigenvector, evaluated at the
Roe-type averaged state of U∗j
Elements of Hj+1/2:

hj+1/2 =
κm

j+1/2
2

(
sm

j+1/2

)(
φ m

j+1/2

)
φ m

j+1/2 - Dissipative portion of a shock-capturing scheme
sm

j+1/2 - Local flow sensor (indicates location where dissipation needed)
κm

j+1/2 - Controls the amount of φ m
j+1/2

(Ut +Fx(U) = 0)



Improved High Order Filter Method
Form of nonlinear filter

hj+1/2 =
κm

j+1/2
2

(
sm

j+1/2

)(
gm

j+1/2−bm
j+1/2

)
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��
��
��1

�
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Control amount of
dissipation based on
local flow condition

Local flow sensor
(Shock Sensor, ACM
(Harten), Ducros et al,
Multiresolution
wavelet, etc.)

Any High Order 
Shock capturing 
numerical flux 
(e.g. WENO7)

High order central
numerical flux
(e.g. 8th order
central)

2007 – κ = global constant
2009 – κj+1/2 = local, evaluated at each grid point
Simple modification of κ (Yee & Sjögreen, 2009)

κ = f (M) ·κ0

f (M) = min

(
M2

2

√
4+(1−M2)2

1+M2 ,1

)
For other forms of κj+1/2,sj+1/2, see (Yee & Sjögreen, 2009)



3D Taylor-Green Vortex (Compressible & Inviscid)
(Comparison of Skew-Symmetric splitting & Entropy Conservative Methods, 643 grids)

C08Dsplit+WENO7fi:  8th-order central + Ducros et al. split +WENO7fi
C08Econs+WENO7fi:  8th-order central entropy conservative flux + WENO7fi

C08Dsplit:   8th-order central + Ducros et al. split 
C08Econs:   8th-order central Entropy conservative flux
C08Esplit:   8th-order central + Entropy split

WENO7:   Standard WENO7

EnstrophyKinetic Energy



3D Isotropic Turbulence with Shocklets
(Comparison of Skew-Symmetric splitting & Entropy Conservative Methods, 643 grids)

Temperature Variance Dilatation

Kinetic Energy Enstrophy



3D Shock-Turbulence Interaction Test Case
(Amplification of Turbulence Across a Supersonic Shock Wave:

Supersonic flow over wings, fins, control surfaces & inlets)

What is needed:
• Inflow BC:
DNS of isotropic
turbulence
(from Larsson & Lele,
Phys. Fluid, 2009)
• Sponge layer
reduce domain size

• Compute
back pressure
to obtain mean
stationary
shock

Periodic BC

Turbulent
Inflow

Sponge Layer

Shock Surface

Post-shock Zone

−2             0                                                        3π−2        4π−2
2π

2π

Periodic BC

x
y

z

Outflow BC

Homogeneous
in Y & Z

Sponge source term: W =−k0u0

2π

(
x− xsp

xmax− xsp

)
(f−< f >yz)

(Gently drive the flow towards a laminar state)



Turbulence Across a Supersonic Shock Wave
(Turbulent eddies are compressed & amplified upon passing though a stationary shock)

Problem parameters:
M = 1.5 or M = 3.0
Mt = 0.16
Reλ = 40 (Taylor microscale Re)

Pr = 0.7
k0 = 4 (Inflow peak energy wavenumber)

DNS grid: 1553×2562

LES grid 1/2: 777×1282

LES grid 1/4: 389×642

∆Z = ∆Y = 3∆X

Num. Method: WENO7fi+split

Q-criterion isosurface, colored by vorticity magnitude
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CDNS: Scheme Comparison, 389×642, M = 1.5
Streamwise Reynolds Stress
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— Filtered DNS

— WENO7fi+split

— WENO7

— WENO5

All: No LES Model

WENO7fi+splt:
> 8th-order

central &
Ducros split

> 7th-order
WENO filter,
diss. in 3D

> Ducros et al.
sensor,
D = 0.01



LES of 3-D Temporal Mixing Layer with Shocks
       (Mach # up to hypersonic speed;  MC = 0.1, 0.8. 1.0, 1.5 & 2.0)

Compressibility Factor

Final Re is as large as 30,000; SGS Model:  Germano-Lilly dynamic procedure



Solving Reactive Governing Equations
(Different Procedures in solving the Governing Eqs.

produce different spurious behavior)

Consider two typical procedures:
Fully coupled sysytem
- Consistent
- Small time step due to numerical instability
Fractional method using the Strang Splitting of the system
- Commonly used in combustion for over 30 years
- Can extend the valid CFL range but exhibits more complex

spurious behavior



Strang Splitting (1968)

Split equations into convective & reactive parts
Ut +F(U)x +G(U)y = S(U)

?
?

Convective step
Ut +F(U)x +G(U)y = 0

A – Convective difference operator
(Full time step of WENO5 or WENO7, RK4)

Reactive step
dU
dt

= S(U)

R – Reactive difference operator
(RK1, RK2, RK3, RK4)

Numerical solution: Un+1 = A
(

∆t
2

)
R(∆t)A

(
∆t
2

)
Un

OR: Un+1 = A
(

∆t
2

)
R
(

∆t
Nr

)
· · ·R

(
∆t
Nr

)
A
(

∆t
2

)
Un

Nr – number of subiterations

(At the next time level)



Subcell Resolution (SR) Method
Wang, Shu, Yee, & Sjögreen, 2012, JCP

Basic Approach
Any high resolution shock capturing operator can be used in the
convection step
Test case: WENO5, WENO7, Roe flux, RK4
Any standard shock-capturing scheme produces a few transition points in
the shock
⇒ Solutions from the convection operator step, if applied directly to
the reaction operator step, result in wrong shock speed

New Approach
Apply Subcell Resolution (Harten 1989; Shu & Osher 1989) to the solution
from the convection operator step before the reaction operator step

Note: if Nr > 1 apply SR at each subiteration



High Order Methods with Subcell Resolution
Strang Splitting + Subcell Resolution (SR)

Ut +F(U)x +G(U)y = S(U)

?
?

Convective step
Ut +F(U)x +G(U)y = 0

A→ U∗
Convective difference operator

(Full time step of WENO5 or WENO7, RK4)

SR step

SR→ U∗∗
SR operator

(No time involved)

Reactive step
dU
dt

= S(U)

R→ Un+1

Reaction difference operator
(RK1, RK2, RK3, RK4)

Numerical solution: Un+1 = A∗
(

∆t
2

)
R(∆t)A∗

(
∆t
2

)
Un

OR: Un+1 = A∗
(

∆t
2

)
R
(

∆t
Nr

)
· · ·R

(
∆t
Nr

)
A∗
(

∆t
2

)
Un

A∗ operator includes SR step correction at shocks
Nr – number of subiterations

(At the next time level)



Subcell Resolution Step
New Approach: Apply Subcell Resolution (Harten 1989; Shu & Osher 1989)

to the solution from the convection operator step before
the reaction operator

I. Locate the shock by examining the mass fraction zij in X
(Harten’s indicator)
x-direction:

y-direction:

sx
ij = minmod(zi+1,j− zij,zij− zi−1,j)

Shock present in the cell Iij if

|sx
i,j| ≥ |sx

i,j−1| and |sx
i,j| ≥ |sx

i,j+1|

sy
ij = minmod(zi,j+1− zij,zij− zi,j−1)

II. Apply subcell resolution in the direction for which a shock has been
detected. If both directions require subcell resolution – choose the
largest jump

sx
ij or sy

ij



Subcell Resolution Step (Cont.)

For Iij with shock present, Ii−q,j and Ii+r,j without shock present:
– Compute ENO interpolation polynomials Pi−q and Pi+r
– Modify points in the vicinity of the shock (mass fraction zij, temperature Tij and

density ρij ) z̃ij

T̃ij

ρ̃ij

=

Pi−q,j(xi,z)
Pi−q,j(xi,T)
Pi−q,j(xi,ρ)

 , θ ≥ xi

 z̃ij

T̃ij

ρ̃ij

=

Pi+r,j(xi,z)
Pi+r,j(xi,T)
Pi+r,j(xi,ρ)

 , θ < xi

θ Determined by the conservation of energy E:∫
θ

xi−1/2

pi−s,j(x;E)dx+
∫ xi+1/2

θ

pi+r,j(x;E)dx = Eij∆x

III. Reaction Step: Apply Reaction difference operator on SR solution to
obtain Un+1

(ρz)n+1
ij = (ρz)n

ij +∆tS(T̃ij, ρ̃ij, z̃ij) – e.g. explicit Euler

Iij – shock center location,
Ii−q,j & Ii+r,j – closest points to the shock (to the left and to the right)



1D C-J Detonation Wave
(Helzel et al. 1999; Tosatto & Vigevano 2008)

Right state
(totally unburned gas)

uuupu =101 

Left state
(totally burned gas)

bubpb = u [ pb 1− pu]
 pb

SCJ− pb/b
1/2

−bb2−c1/2


SCJ=[uuu pbb
1/2]/u

b=−pu−u q0 −1 c= pu
22−1 puu q0/1

Ignition temperature 
Heat release
Rate parameter

T ign=25
q0=25

K 0=16 418

K T =K 0exp −T ignT 
7



Spurious numerics in Solving Reactive Equations Spurious Numerics Due to Source Terms

Wrong Propagation Speed of Discontinuities
(Standard Shock-Capturing Schemes: TVD, WENO5, WENO7)

Chapman-Jouguet (C-J)
1D detonation wave

Arrhenius reaction rate:
K(T) = K0 exp

(
−Tign

T

)
K0 can be large

(stiff coeff.)

�
��

50 pts (Ref. 10,000 pts), K0 = 16,418

Note: Wrong propagation speed becomes more pronounced as K0 increases
D. Kotov (CTR) NASA EAST simulations AIAA, June 24-27, 2013 7 / 56



6

Wrong Propagation Speed of Discontinuities
(WENO5, Two Stiff Coefficients, 50 pts)

4 K0K 0=16 418

Reference, 10,000 pts
50 pts



1D C-J Detonation (K0 = 16418, 50 pts) 
Temperature Mass Fraction

WENO5:            Standard 5th order WENO (WENO7, TVD)
WENO5/SR:      WENO5 + subcell resolution
WENO5fi:          filter version of WENO5
WENO5fi+split: WENO5fi + preprocessing (Ducros splitting)
Reference:         WENO5, 10,000 points

Standard Meth. –

Improved Meth. – 

(Strang Splitting & Safeguard)

tend = 1.7

8



Behavior of the schemes below CFL limit

Density by different CFL
 WENO5

 Incorrect or diverged solution may occur for ∆t below CFL limit. 
 CFL limit based on the convection part of PDEs
 Confirms the study by Lafon & Yee and Yee et al. (1990 - 2000)

Strang Splitting & Safeguard, 50 pts, 100 K0

(Allowable ∆t below CFL limit, consists of disjoint segments)

9



MHD (Four Forms)
(Conservative, Godunov/Powell, Janhunen, Brackbill & Barnes)

1D MHD:





Non-uniqueness of Ducros et al. Splitting for MHD
(Minimize the use of numerical dissipation for high order central schemes)

• MHD inviscid (ideal) flux derivatives consist of triple products of 
conservative variables & their derivatives

• No unique guidelines in splitting triple products of derivatives (more 
choices than their gas dynamics counterparts)
(See Sjogreen & Yee, ICOSAHOM-2016 & Journal version for the chosen forms) 

• 4-Forms:  Split all 8 flux derivatives, partial or just the gas dynamic 
portion (all recover to split form of gas dynamics when MHD not present)
(Results compare with no splitting) 

• Four forms of the MHD Equations to be solved:
>  Conservative form (no split)
>  Godunov/Powell symmetrizable form (non-conservative)
>  Janhunen form: (Div B) terms not included in the gas dynamics part of the equations)

>  Brackbill & Barnes form

The above consists of 12 combinations for the current study



Alfven Wave Smooth Flow Test Case (Max. Norm Errors vs. Time)
(4 MHD & 4 Ducros et al. 8th-order Split Method Comparison with 8th-order Classical central)

Four MHD:  e0, eG, eJ & eB
Four Split Methods:   DS1, DS2, DS3 & DS4

Best:  
C08DS4 by eG





Ducros et al. Splitting - Orszag-Tang Vortex Test case
(Only on the Gas Dynamic Variables)

WENO5fi (no split) + Dissp WENO5fi+split

Density

divB History



Summary

GAS dynamics: 
• Split centered schemes can improve nonlinear stability for smooth flows in general 
• Nonlinear filter version of split schemes can improve stability & accuracy for DNS & LES
• High order entropy conserving methods (centered or nonlinear filter version)

provide similar stability & accuracy improvement as split schemes
MHD:
• Split centered schemes can improve nonlinear stability in general for smooth flows

but MHD equation dependent
• Nonlinear filter version of split schemes can improve stability & accuracy for flows with 

discontinuities but MHD equations dependent
• High order entropy conserving methods (centered or nonlinear filter version) can

provide different stability & accuracy improvement, depending on the forms of the 
MHD equations & the choice of entropy fluxes

(Split Centered Schemes & Entropy Conservative centered (EC) Methods)



Concluding Remarks"
(Compressible Gas Dynamics of a Wide Spectrum of Flow Types)

Smooth Flows:  Stable without added high order linear numerical dissipation 
   >  Semi-Conservative Entropy Splitting with summation-by-part (SBP) boundary closure
        energy norm bound (Yee et al. 1999-2007, Sandham et al. 2002-present)
           -  Most accurate & stable among the considered three splittings


   >  Ducros et al. splitting
            –  Improved stability
            –  Smaller improvement than Entropy Splitting 

Flows with shocks:  Under the Yee et al. nonlinear filter framework

	
	
	

Stability Improvement by Skew-Symmetric Splitting

Ducros et al. Splitting Employs Two Types of Central Scheme:  
    >  Classical high order central (6th-order & 8th-order)
    >  Three DRP (4th-order, 7-point & 9-point grid stencils) 
  
Among studied test cases
Classical central schemes provide slightly more improvement than DRP



Significance
• The key advantage of the adaptive flow sensor is that no 

a priori knowledge of the flow structure of the entire 
evolution is needed, even for compressible shock-free 
turbulence & low speed turbulence with shocklets.  

• The proposed developments provide an improved 
predictability & reliability of CFD turbulent computations 
containing both low speed and high speed regimes that 
can be compromised by standard high order shock-
capturing schemes without a proper numerical 
dissipation control.



High Order Numerical Method Development in MHD"
(Added Issues Beyond Compressible Gas Dynamics Developments) 
 MHD Equations:

   > Conservative Form - non-strictly hyperbolic system w/ degenerate identical eigenvalues
            > Godunov/Powell Form (1972, 1994) - symmetrizable hyperbolic non-conservative system
            > Janhunen Form (2000)
            > Brackbill & Barnes (1980)
 Skew-symmetric Splitting of Inviscid Flux Derivatives:  Improve Stability & 
      Minimize Num. Dissipation
            >  Yee et al. Entropy Splitting (2000) – Only for the gas dynamics portion 
            >  Ducros et al. Splitting (2000) & Pirozzoli Generalization (2010) – Not unique 
            >  High Order Extension of Tadmor Entropy Conservative Numerical Fluxes
                   (Sjogreen & Yee, 2009) – can be viewed as a splitting 

 Discrete Conservation Methods:  FV vs. FD & DG, etc; Low Order vs. High Order 
             >  Entropy stable conservative numerical fluxes

 – Low Order:   Janhunen (2000), Winters & Gassner (2016), Chandrasekar-Klingenberg (2015) 
 – High Order:  Sjogreen & Yee (2009) - Central, Fjordholm, Mishra & Tadmor (2012) - ENO, etc.

            >  Momentum conservation, Kinetic energy preservation, etc. 

 Approximate Riemann Solver:  Extension of Roe’s Average States
            >  Gallice average states (1997)
            >  Ismail & Roe (2009) – Logarithmic mean for entropy (not square root mean)
                …
 Eigenvector Scaling: (Roe & Balsara, 1996)



3D Taylor-Green vortex
(Inviscid & Viscous Shock-Free Turbulence)

Computational Domain: 2π square cube, 643 grid.
(Reference solution on 2563 grid)

Initial condition
ρ = 1,
p = 100+([cos(2z)+2][cos(2x)+ cos(2y)]−2)/16,
ux = sinxcosycosz
uy =−cosxsinycosz
uz = 0.
Initial turbulent Mach number: Mt,0 = 0.042
Final time: t = 10

Viscous case
µ/µref = (T/Tref )

3/4

µref = 0.005,Tref = 1,Re0 = 2040



Compressible Isotropic Turbulence
(Low Speed Turbulence with Shocklets)

Computational Domain: 2π square cube, 643 grid.
(Reference solution on 2563 grid)

Problem Parameters

Root-mean-square velocity: urms =
√
〈uiui〉

3

Turbulent Mach number: Mt =

√
〈uiui〉
〈c〉

Taylor-microscale: λ =
√

〈u2
x〉

〈(∂xux)2〉

Taylor-microscale Reynolds number: Reλ = 〈ρ〉urmsλ

〈µ〉
Eddy turnover time: τ = λ0/urms,0

Initial Condition: Random solenoidal velocity field with the given spectra

E(k)∼ k4 exp(−2(k/k0)
2)

3
2 u2

rms,0 =
〈ui,0ui,0〉

2 =
∫

∞

0 E(k)dk
urms,0 = 1, k0 = 4, τ = 0.5, Mt,0 = 0.6, Reλ ,0 = 100
Final time: t = 2 or t/τ = 4



3D Isotropic Turbulence with Shocklets
Compressible & Inviscid

Comparison of 6 Methods, 643 grids
Energy Spectra



LES: Filtering Procedures Comparison, 389×642, M = 1.5

Streamwise Reynolds Stress
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Streamwise Vorticity
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Transverse Reynolds Stress
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Transverse Vorticity
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WENO7:
— Filtered DNS

WENO7fi+split

— No-LES
WENO7fi+split

— LES
WENO7fi+split

— LES + fix:
Cs = 0 at
shock
WENO7

— LES + fix:
One-sided
filter at shock
WENO7



Spurious numerics in Solving Reactive Equations 1D C-J Detonation Problem

Behavior of the Schemes Below CFL Limit

The examples on the next slides indicate different spurious behavior by
following different numerical procedures for solving the governing equations:

Strang splitting with Safeguard procedure

Strang splitting without Safeguard procedure

No-Strang splitting with Safeguard procedure

No-Strang splitting without Safeguard procedure

D. Kotov (CTR) NASA EAST simulations AIAA, June 24-27, 2013 16 / 56



Scalar Case  Behavior of WENO5 & WENO5/SR below CFL limit
                    (Obtaining the Correct Discontinuity Speed)

Stiff. K0

Stiff. 100 K0

Stiff. 1000 K0

            Grid 50                       Grid 150                       Grid 300

Note: CFL limit based on the convection part of PDE

Source term:
S = K

0
(1-u)(u-0.5)u

K
0
 = 10,000

Strang/Safeguard



Behavior of Improved Schemes Below CFL Limit"
(Different Procedures:  Num. Dissip. Control Schemes)

Strang/Safeguard

Strang/No-Safeguard

No-Strang/Safeguard
  (Stable for small CFL)

No-Strang/No-Safeguard 
    (Stable for small CFL)

      1D C-J Detonation                         Grid 50                     Grid 150                    Grid 300



(a) Strang/Safeguard, Nr > 4 
         Can extend the valid CFL range & with more complex spurious behavior
(b) Strang/No-Safeguard, Nr > 4
         Less spurious behavior than Strang/Safeguard


(c)  No-Strang/Safeguard  (Small CFL)
(d)  No-Strang/no-safeguard (Small CFL; similar to (c) )


Summary"
Same spatial & temporal schemes for the convection operator"

(1D C-J Detonation, K0 , and 50, 150 & 300 grid points)"


General:  
 > (b) - (d) exhibit a similar CFL range with less spurious behavior than (a). 
 > No-Strang splitting + Safeguard or No-Safeguard procedures are constrained
     by a similar CFL range. 
 > Over all, WENO5/SR & WENO5fi+split in certain cases can 
     improve the results in terms of reducing spurious numerics.	  
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Behavior of Improved Schemes Below CFL Limit"
(Effect of # sub-iteration:  Reaction Step Time Integrator, RK1)

Nr = 1

Nr = 5

Nr = 10

Nr = 100

         1D C-J Detonation                      Grid 50                    Grid 150                     Grid 300

  Strang Splitting + Safeguard
        ODE subiterations



Effort of Different Time Integrator -- Reaction Step"
(Strang Splitting/Safeguard, Nr=4, SR at every RK stage)

RK1

RK3

RK4

       1D C-J Detonation                  Grid 50                              Grid 150                          Grid 300



Explicit Euler (RK1) for the reaction operator:
   (a) Strang/Safeguard, Nr > 1, SR at every subiteration 
         Can extend the valid CFL range & with more complex spurious behavior
   (b) Strang/No-Safeguard, Nr > 1
        Less spurious behavior than Strang/Safeguard

RK2, RK3 & RK4 for the reaction operator:
   (a) Strang/Safeguard, Nr > 1, SR at every subiteration 
         >  Can extend the valid CFL range & with complex spurious behavior
         >  SR at every RK stage – minor different
   (b) Strang/No-Safeguard, Nr > 1, SR at every subiteration
         >  Less spurious behavior than Strang/Safeguard
         >  No need at every RK stage

Summary"
Same spatial & temporal schemes for the convection operator"

(1D C-J Detonation, K0 , and 50, 150 & 300 grid points)

General:  
   >  Over all, WENO5/SR & WENO5fi+split improve the results in terms 
      of reducing spurious numerics
   > Higher order RK improve spurious behavior only slightly	  
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