Celestial Attitude Reference and Determination System (CARDS) Daytime Star Tracker

Dave Stuchlik Scott Heatwole

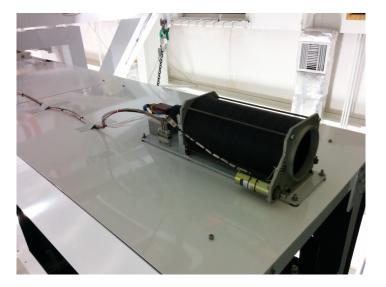
May 10, 2016

Introduction

- CARDS is a system allowing for modular integration of multiple sensor types with custom algorithms and multiple I/O interfaces
 - Can connect multiple cameras for different functions and output on different interfaces to multiple "users"
 - Configurable via XML script
- Grew out of work on GigE cameras for attitude sensors
- Sun sensor and single star tracker developed to support WASP
 - Flew sun sensor and daytime bright body tracker on HYSICS2 (Aug, 2014)
 - Flew daytime bright body tracker on OPIS (Oct, 2014)
 - Became pathfinder for daytime star tracker

Pathfinder Daytime Star Tracker

- Followed in footsteps of previous missions BLAST and HERO, as well as, DayStar development
 - CCD with longpass filter at edge of visible region
- All COTS
 - Technologic 1GHz Arm embedded computer running Linux
 - GigE Allied Vision Tech Manta G-283
 - Sony ICX674 CCD
 - Zeiss 85mm f/1.4 lens with IR coatings
 - Lumicon Hydrogen-Alpha Filter (650nm longpass)
- Flight on OPIS
 - Single star tracking of bright bodies during daytime and storing images for post processing
 - Stored images shows stars down to \sim 4.5 magnitude
 - 105kft altitude limited seeing dimmer stars
 - Method for setting focus of the lens was crude and has since been refined


Image of Alphekka from OPIS flight

Pathfinder Daytime Star Tracker

Daytime Star Tracker Design

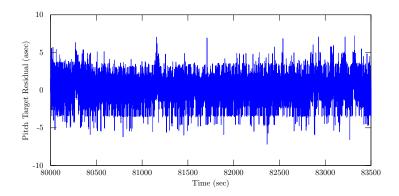
- Switched from Allied Vision Tech camera to Point Grey GX-FW-28S5M-C
 - GigE to Firewire camera interface
 - Firewire allows for DMA image transfer
 - greatly reduces CPU load
 - same Sony ICX674 sensor
- Switched to RTD with 1Ghz AMD Fusion processor
 - RTD has Firewire modules
 - Increased power and weight
- Kept Zeiss Lens and Filter
- Voltage = 8-36V
- TLM = RS-422, RS-232, UDP
- Power = 18W
- Mass
 - Tracker Head = 1.6 kg
 - RTD Computer = 2.4 kg

Daytime Star Tracker Head

Daytime Star Tracker Processor

Daytime Star Tracker Design Cont.

- Video Downlink
 - Gives situational awareness of what the tracker is pointed at
 - Advanced Micro Peripherals NanoVTV
 - Converts non-interlaced VGA signals to NTSC/PAL signals
 - +5 VDC
 - 2.75" x 1.75" form factor
 - Writing 2x2 binned image to frame buffer which is piped to NanoVTV
 - NTSC signal sent to SIP which sends to ground via TV transmitter



Daytime Star Tracker Performance

- $FOV = 5.9^{\circ}x \ 4.4^{\circ}$
- Noise Equivalent Angle (NEA)
 - Perpendicular to Boresight ≈ 5 asec 3- σ
 - From OPIS pathfinder data (single star)

Modes

- Idle
 - Sit and wait for ground commands
- Lost In Space
 - Solves for attitude based on star pattern
- Tracking
 - Attitude based on tracking stars
 - Search for new stars as stars enter and leave FOV
- Bright Spots
 - Contingency mode
 - Ground commands used to id spots in image
 - Allows for jump starting tracking if LIS fails due to a lack of stars during daytime

Algorithms

- Star detection
 - Novel convolution scheme with standard blob detection algorithm to find stars in strong background gradient
- Star Centroiding
 - Simple center of intensity calculation for sub pixel accuracy
- Lost In Space
 - Using Pyramid algorithm with k-vector search*
- Tracking
 - Nearest neighbor search for finding new stars
- Quaternion estimation
 - ESOQ-2[†]

^{*}Mortari, D., Samann, M. The Pyramid Star Identification Technique.

[†] Mortari, D. ESOQ-2 Single-Point Algorithm for Fast Optimal Spacecraft Attitude Determination.

Current/Future work

- WASP Flights
 - X-Calibur (Fall 2016 Fort Sumner and Winter 2018 Antarctica)
 - PICTURE-C (Fall 2017 Fort Sumner, Fall 2019 Fort Sumner)
 - PICTURE-C science doesn't need daytime pointing but day time can be used for extra testing of daytime star tracker before mission begins
- Transition to new lens
 - Zeiss discontinued IR version of lens
 - Only have three flight lens
 - Working with Sting Ray Optics to a near COTS replacement
 - 100mm f/1.5 SWIR lens

