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Motivation

• Aircrafts with all electric 
powertrain are increasingly being 
used for long missions

• Electrical and Electronic 
components have increasingly 
critical role in on-board, 
autonomous functions for 
decision making

• We need understanding of 
behavior of deteriorated 
components to develop capability 
to anticipate failures/predict 
remaining RUL

• Safe Flight under failure 
operating conditions.
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Motivation

• Health Monitoring of Energy 
Systems is key to EA systems 

• Batteries increasingly used in 
more and more systems as a 
power source

• Prediction of Remaining useful life 
(RUL) and end-of-life (EOL) are 
critical to system functions
– How much longer can the system 

be used, given expected usage 
conditions?

– How many more usage cycles until 
battery capacity is not sufficient for 
required system operations?

Solve using model-based prognostics 
approach.

Ref: www.nasa.gov
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Why Prognostics?

Home Base

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft

Example: UAV Mission
Visit waypoints to accomplish science objectives. Predict aircraft battery end of 
discharge to determine which objectives can be met. Based on prediction, plan 
optimal route. Replan if prediction changes.

Prognostics: 
Full discharge 
before mission 

completion
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Fault Detection 
Isolation & 

Identification

Damage 
Estimation Prediction

uk p(EOLk|y0:k)
System

yk p(xk,θk|y0:k)

p(RULk|y0:k)

F

Prognostics

Model-Based Architecture

System receives 
inputs, produces 

outputs
Identify active 

damage 
mechanisms

Estimate current 
state and 

parameter values

Predict EOL and 
RUL as probability 

distributions

1 2

3 4

Estimation Prediction
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Prognostics Architecture

• System gets input and produces output
• Estimation module estimates the states and parameters, given system inputs and outputs

– Must handle sensor noise
– Must handle process noise

• For some event E, e.g., end-of-discharge or end-of-life, prediction module predicts kE
– Must handle state-parameter uncertainty at kP
– Must handle future process noise trajectories
– Must handle future input trajectories
– A diagnosis module can inform the prognostics what model to use

• In model-based approaches, require a dynamic model of the system i.e. battery
• Age rate parameter estimation computes parameters defining aging rate progression
• EOL prediction computes prediction of time of EOL, given age parameter and age rate 

parameter estimates
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State Estimation

• What is the current system state and its associated 
uncertainty?
– Input: system outputs y from k0 to k, y(k0:k)
– Output: p(x(k),θ(k)|y(k0:k))

• Battery models are nonlinear, so require nonlinear state 
estimator (e.g., extended Kalman filter, particle filter, 
unscented Kalman filter)

• Use unscented Kalman filter (UKF)
– Straight forward to implement and tune performance
– Computationally efficient (number of samples linear in size of state 

space)
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Prediction

• Most algorithms operate by simulating samples forward in 
time until E

• Algorithms must account for several sources of uncertainty 
besides that in the initial state
– A representation of that uncertainty is required for the selected 

prediction algorithm
– A specific description of that uncertainty is required (e.g., mean, 

variance)



P r o g n o s t i c s  C e n t e r  o f  E x c e l l e n c e

Battery Modeling

− Equivalent Circuit Empirical Models
§ Most common approach
§ Various model complexities used 
§ Difficulty in incorporating aging effects
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Discharge
Reduction at pos. electrode:
Li1-nCoO2 + nLi+ + ne- à LiCoO2
Oxidation at neg. electrode:

LinC à nLi+ + ne- + C
Current flows + to –
Electrons flow – to +

Lithium ions flow – to +

Charge
Oxidation at pos. electrode:
LiCoO2 à Li1-nCoO2 + nLi+ + ne-

Reduction at neg. electrode:
nLi+ + ne- + C à LinC

Current flows – to +
Electrons flow + to –

Lithium ions flow + to –

− Electrochemical Models vs. Empirical Models
§ Battery physics models enable more direct representation of age-related changes in 

battery dynamics than empirical models
§ Typically have a higher computational cost and more unknown parameters

Battery Modeling
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Electrochemical Li-ion Model
• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources

– Equilibrium potential àNernst equation with Redlich-Kister
expansion

– Concentration overpotential à split electrodes into surface and bulk 
control volumes

– Surface overpotential à
Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances
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Battery Aging

• Contributions from both decrease in mobile 
Li ions (lost due to side reactions related to 
aging) and increase in internal resistance

– Modeled with decrease in “qmax” parameter, 
used to compute mole fraction

– Modeled with increase in “Ro” parameter 
capturing lumped resistances

Simulated
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Case 1 - Edge Aircraft

• Electric aircraft operated at NASA 
Langley

• Piloted and autonomous 
missions, visiting waypoints

• Require 2-minute warning for 
EOD so pilot/autopilot has 
sufficient time to land safely
– This answer depends on battery 

age
– Need to track both current level of 

charge and current battery age
– Based on current battery state, 

current battery age, and expected 
future usage, can predict EOD and 
correctly issue 2-minute warning

Runway

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft
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Edge 540-T

• Subscale electric 
aircraft operated at 
NASA Langley 
Research Center

• Powered by four 
sets of Li-polymer 
batteries

• Estimate SOC 
online and provide 
EOD and remaining 
flight time 
predictions for 
ground-based pilots
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Predication over Flight Plan

• Measured and predicted 
battery current, voltage 
and SOC different time 
steps
• The min, max and median 

predictions are plotted 
from each sample time 
until the predicated SOC 
reaches 30%

• Predictions for remaining flight time for 
entire flight plan
• Overestimate till parasitic load is injected
• Once the parasitic load is detected the 

remaining flying time time prediction shifts 
down.

Ref : E. Hogge et al, “Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft”, PHM 2015
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Edge-540 Flight - Demo
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Performance Requirements

• Accuracy requirements for the two minute warning were specified as:
– The prognostic algorithm shall raise an alarm no later than two minutes 

before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– The prognostic algorithm shall raise an alarm no earlier than three minutes 
before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– Verification trial statistics must be computed using at least 20 experimental 
runs
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Case 2 : RUL Prognosis for a fixed-wing Electric Aircraft

Probability densities for RUL at the beginning of the flight t = 0s 
and at the decision point t = 400s with pwr = 0:1

Ref : Kulkarni, Roychoudhury, and Schumann. "On-board Battery Monitoring and Prognostics for Electric-Propulsion 
Aircraft", 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, AIAA Propulsion and Energy Forum, (AIAA 2018-5034)
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Data Sets Available for Download

• https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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Conclusions

• Prognostics enables the pilot/operator to estimate future 
health  state of the system  

• Known future health state helps is taking better decisions 
• Both combined can help in keeping the EA system as well 

as airspace safe
• Validate models and algorithms with data from lab 

experiments and fielded systems
• Defining operational requirements for different systems
• Future work in progress : 

– Temperature models
– Higher fidelity models
– More efficient algorithms
– Additional applications
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Thank you
chetan.s.kulkarni@nasa.gov

http://prognostics.nasa.gov


