

Kilopower Reactor Using Stirling Technology (KRUSTY) Nuclear Ground Test Results and Lessons Learned

Marc Gibson¹, David Poston², Patrick McClure², Tom Godfroy³, Max Briggs¹, Jim Sanzi³

¹NASA Glenn Research Center

²Los Alamos National Laboratory

³Vantage Partners, LLC

KRUSTY Test Objectives

- Objective 1: Operate the reactor at steady state with a thermal power output of 4 kW_t at a temperature of 800° C
- Objective 2: Verify the stability and load following characteristics of the reactor during nominal and off-nominal conditions
- Objective 3: Benchmark the nuclear codes and material cross sections using the test data

Kilopower Development and the KRUSTY Experiment

Flight Concept

Hardware

KRUSTY

KRUSTY **Experimental Design**

KRUSTY

Hardware

Experimental

Multi-mission Design

Slide 3

Kilopower 1-3 kWe Multi-Mission vs. KRUSTY Hardware

Reactor Assembly

Experiment Assembly

Flight vs. KRUSTY

Flight Unit

KRUSTY Experiment

Reactor Startup

Maximum Thermal Draw

- 10.04 hours: Stirling engines and simulators turned up to maximum thermal draw
- 10.12: core thermal power increases enough to reverse core temperature
- 10.36: First period of oscillation shows controlled dampened response

Total Coolant Loss Scenario

- 27.04 hours: Stirling engines and thermal simulators are shut off to simulate worst case reactor coolant loss condition
- 27.17: Local maximum is reached when reactor thermal power decreases to the point where core temperature reverses
- 27.59: First period of oscillation showing damped response converging to steady state

Setting the Reactor Temperature

Overall Performance

KRUSTY Performance Metrics

Event Scenario	Performance Metric	KRUSTY Experiment	Performance Status
Reactor Startup	< 3 hours to 800 deg. C	1.5 hours to 800 deg. C	Exceeds
Steady State Performance	4 kWt at 800 deg. C	> 4 kWt at 800 deg. C	Exceeds
Total Loss of Coolant	< 50 deg. C transient	< 15 deg. C transient	Exceeds
Maximum Coolant	< 50 deg. C transient	< 10 deg. C transient	Exceeds
Convertor Efficiency	> 25 %	> 30 %	Exceeds
Convertor Operation	Start, Stop, Hold, Restart	Start, Stop, Hold, Restart	Meets
System Electric Power Turn Down Ratio	> 2:1 (half power)	> 16:1	Exceeds

Conclusions

KRUSTY test complete!!

- First real space reactor test in over 50 years
- Less than 20 million dollars invested
- Completed in just over 3 years
- All objectives were met or exceeded

What does this mean for NASA?

- The ability to move forward towards a flight mission
- A proven design capable of providing multiple kilowatts of electrical power for several years or decades