
2018 Space Situational Awareness OPERATORS' WORKSHOP

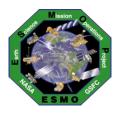
November 13-16, 2018

To Maneuver or Not to Maneuver That is the Question


Bill Guit

Aqua Mission Director – Code 584/428
Mission Validation and Operations Branch
Earth Science Mission Operations (ESMO) Project
Goddard Space Flight Center (GSFC)
National Aeronautics and Space Administration (NASA)

William.J.Guit@nasa.gov 301-614-5188


Topics

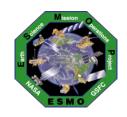
- Beginning of ESMO Operational Collision Avoidance
- Early Earth Observing System (EOS) Debris Avoidance Maneuvers (DAMs)
- Recent EOS Aqua Challenging Case Studies
- EOS High-Interest Events (HIEs) Statistics
- EOS Observations and Challenges
- Questions

Early Days – The Beginning

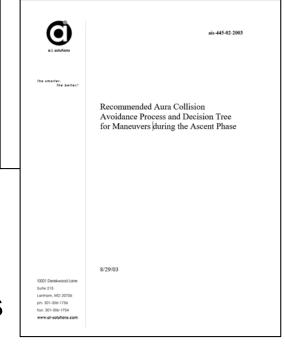
March 2002: NASA/GSFC Orbital Debris Workshop:

- NASA Policy to Limit Orbital Debris Generation
- Case Studies:
 - CGRO Controlled Reentry (May-June 2000)
 - Landsat-4 Decommissioning (May-June 2001)
 - TRMM Orbit Raise (August 2001)
 - EP/EUVE Reentry (January 31, 2002)
- Landsat-7 Conjunction Assessment Study (January 2002)
 - Multiple conjunctions per day
 - Began working to establish procedures for ongoing support to ESMO EOS missions

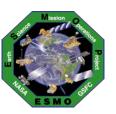
ORBITAL DEBRIS: BACKGROUND AND POLICY Nicholas L. Johnson Chief Scientist and Program Manager for Orbital Debris Orbital Debris Colloquium Goddard Space Flight Center 20-21 March 2002



Early Days



- May 2002: Screened Aqua Ascent Maneuvers
- October 2003: Screened Aqua Inclination Adjust Maneuver (IAM) #1
- March 2004: Screened Aqua IAM #2
- May 2004: NASA request to US
 Department of Defense to establish
 routine conjunction assessment
 process for NASA robotic missions
- July 2004: Screened Aura Ascent Maneuvers
- Fall 2004: Screened Aqua & Aura IAMs

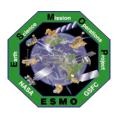

AQUA-Ascent-Plan-COLA-Opp-Concept-31May02 501M2 DRAFT

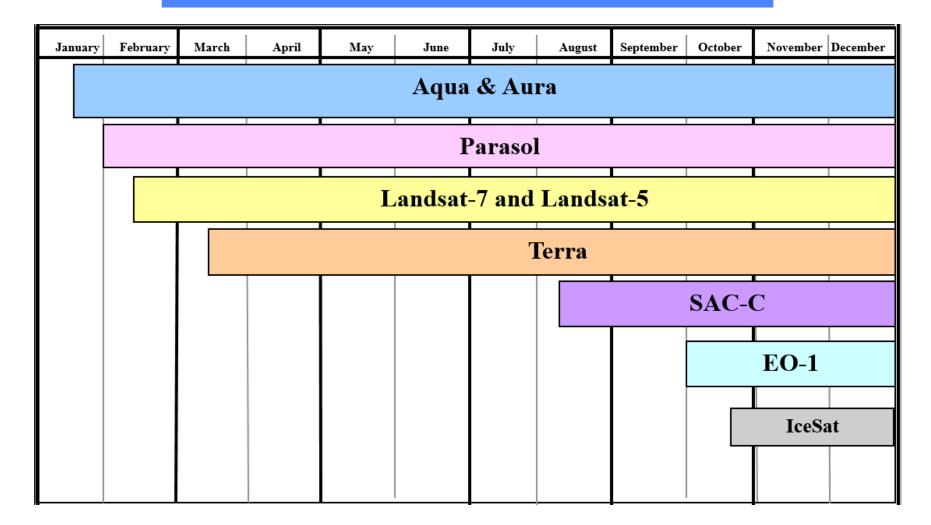
Aqua Ascent Operations Concept for Conjunction Assessment and Collision Avoidance

NASA Request to US Department of Defense (May 25, 2004)

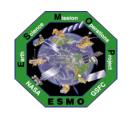
NASA/GSFC Goals

- NASA/GSFC would like to establish an interface with USSTRATCOM for routine conjunction assessment screening of high importance NASA/GSFC assets
- Desire a simple (JSC-like) interface between NASA/GSFC and Cheyenne Mountain Operations Center (CMOC)
- 7-day-a-week, automated operation, supplemented by 24x7 around-the-clock mission operations personnel
- Automatic notification within 24-hours of any close approach that would require an evasive maneuver
- Probabilistic determination of need to maneuver (JSC-like)
- Documented in an Operations Agreement between GSFC & USSTRATCOM
 - Appendix for each Program supported e.g. EOS, TDRSS, TBD


5/25/2004


Conjunction Assessment Request

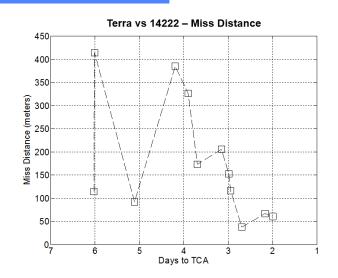
3

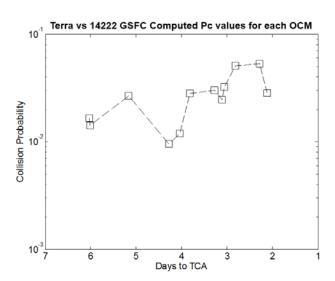


Routine Conjunction Assessment 2005 Screening Build-up

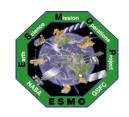


Early EOS Debris Avoidance Maneuvers


EOS Terra vs. 14222


(SCOUT G-1 Debris)

1st NASA Robotic Mission Debris Avoidance Maneuver (DAM)


- October 21, 2005
- Maximum Pc of 8.2E-02 (about 1:12)
- Minimum miss distance about 37 meters
- Mitigated by 2.7 second mini-drag makeup maneuver (#44 for the mission)
- Burn at TCA minus 48-hours
- Miss Distance based Max Pc approach
- Miss Distance → about 4.5 km
- By performing a maneuver that increases the miss distance to 4km, the maximum collision probability was reduced to below 1E-04 (1 in 10,000)

1st NASA Robotic Mission DAM Makes the Front Page of

Orbital Debris Quarterly News

Volume 10, Issue 1 January 2006

Inside...

Large Area Debris Collector (LAD-C) Update2

Revision of Space Shuttle Wing Leading Edge Reinforced Carbon-Carbon Failure Criteria Based on Hypervelocity Impact and Arc-Jet Testing ...3

Object Reentry Survivability Analysis Tool (ORSAT) – Version 6.0.....4

Disposal of Globalstar Satellites.....5

Disposal of GPS

Collision Avoidance Maneuver Performed by NASA's Terra Spacecraft

flagship of NASA's Earth Observing System (EOS), would come within 500 m of Terra on 23 October, successfully performed a small collision avoidance GSFC and SSN personnel undertook a more demaneuver on 21 October 2005 to ensure safe passage tailed assessment of the coming conjunction. by a piece of orbital debris two days later. This action demonstrated the effectiveness of a conjunction assessment procedure implemented in 2004 by personnel of the NASA Goddard

Space Flight Center (GSFC) and the U.S. Space Surveillance Network (SSN). The trajectories of Terra and its companion EOS spacecraft are frequently compared with the orbits of thousands of objects tracked by the SSN to determine if an accidental collision is possible. More than 2600 objects are known to

pass through the altitude regime multiple times (sometimes more than two dozen) a collision avoidance maneuver. each day.

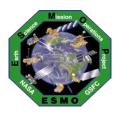
cember 1999 on a nominal 6-year mission to moni- function to prevent the waste of precious propelfrom a Scout G-1 upper stage (International Des-ruption to the important Terra mission.

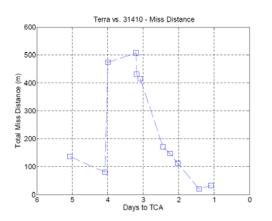
The Terra spacecraft, often referred to as the ignator 1983-063C, U.S. Satellite Number 14222)

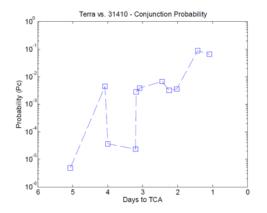
The Scout debris was in an orbit with an altitude similar to that of Terra (approximately 680 km by 710 km), but its posigrade inclination of 82.4° and different orbit plane meant that a collision would have occurred at a high velocity of near-

> ly 12 km/s. By 21 October refined analysis of the future close approach indicated that the miss distance was only approximately 50 m with an uncertainty that yielded a probability of collision on the order of 1 in 100. Con-

of Terra sequently, a decision was made for Terra to execute

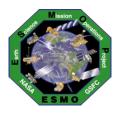

Terra normally maneuvers a few times each Terra (International Designator 1999-068A, U.S. year to maintain its precision orbit, and the collision Satellite Number 25994) was launched on 18 De- avoidance maneuver was designed to serve this same tor the complex nature of the Earth's atmosphere lant. A very small maneuver was performed nearly and surface. The nearly five-metric-ton spacecraft two days before the anticipated encounter, ensuring circles the Earth at an altitude of 705 km with an that the Scout debris would pass Terra at a distance orbital inclination of 98.2°. When a conjunction as- of more than 4 km. A post-encounter assessment sessment on 17 October predicted a piece of debris confirmed that this goal was achieved without dis-


EOS Terra vs 31410


(Fengyun-1C Debris)

2nd EOS Terra DAM

- June 22, 2007
- Maximum Pc of 1.6E-01 (about 1:6)
- Minimum miss distance about 18 meters
- Mitigated by 1.35 second maneuver (#50)
- Burn at TCA minus 24-hours
- Miss Distance based approach
- Miss distance → about 1.2 km
- Actual post-maneuver data showed that the resulting miss distance with the FENGYUN debris object was 1.227 km.



1st NASA Robotic Mission DAM to Avoid Debris Caused by Chinese A-Sat Test (January 2007)

Made the Front Page of

July 9, 2007

PROFILE/22>

BRIG. GEN.

PROGRAM EXECUTIVE DEFICER NATIONAL POLAR-ORBITING OPERATIONAL ENVIRONMENTAL SATELLITE SYSTEM

VENTURE SPACE

Rocketplane Work Force Shrinks by a Fifth

Rocketplane, the company behind the K-I reusable rocket and XP suborbital space plane, has shed about a fifth of its work force since the first of the year. See story, page 4

Suborbital Flight Sales Remain Strong

After the initial surge of interest in suborbital space fourism. Virgin Galactic thought the pace of paid reservations might slow — but sales remain strong. See story, page 12

CIVIL SPACE

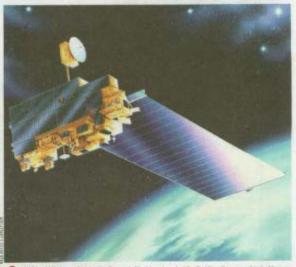
House, Senate Bills Boost NASA's Budget

The House Appropriations Committee is poised to take up a spending measure that would boost NASA's 2008 funding to \$17.6 billion, an increase of \$1.4 billion over this year's level and some \$290 million more than the U.S. space agency requested. See story, page 6

Europe's ATV Moves to Launch Site

After three years of tests. Europe's Automated Transfer Vehicle (ATV) will begin a two-week. journey to its French Guiana launch site for launch preparation. See story, page 10

NASA Moves Terra Satellite to Avoid **Debris Caused by Chinese A-Sat Test**

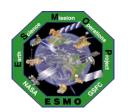

BRIAN BERGER, WASHINGTON

*light controllers at NASA's Goddard Space Flight Cen-ter, Greenbelt, Md., had to ter, Greenbelt, Md., had to maneuver the Terra environmental spacecraft in late June to avoid orbital debris created by the Jan. 11 test of a Chinese antisatellite (A-Sat) weapon.

NASA officials said July 6 that the event marked the first time the agency has had to move one of its spacecraft to avoid a potential collision with debris created by the controversial Chinese A-Sat test.

A defunct Chinese weather satellite, Fengyun I-C, was orbiting at an altitude of roughly 850 kilometers when it was destroved Jan. 11 after being struck by a kinetic energy A-Sat weapon, producing a cloud of debris that is being tracked by lance Network.

A "Terra Mission Status Update" posted on the U.S. space


the U.S. military's Space Surveil - NSA said that repositioning the Terrosate life (above) marked the first time the agency has had to move one of its spacecraft to avoid a potential collision with debris created by the controversial Chinese A-Sat test.

the satellite out of harm's way, working satellite. agency's Web site says Goddard The resulting momentum raised "This was a pretty large piece

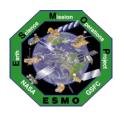
VOLUME 18 ISSUE 27 \$4.95 (\$7.50 Mon-U.S.)

But only page 2 in NASA/JSC's Orbital Debris Quarterly News

1st NASA Robotic Mission DAM vs. Fengyun-1C Debris

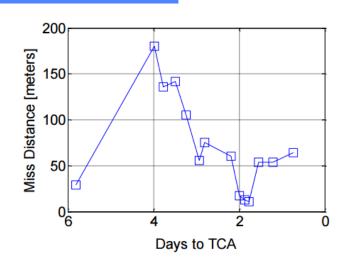
National Aeronautics and Space Administration

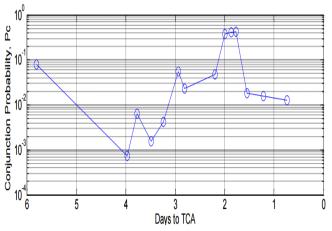
Orbital Debris Quarterly News


Volume 11, Issue 3 July 2007

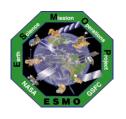
Page 2

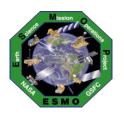
The large number of debris from Fengyun-1C are posing greater collision risks for spacecraft operating in low Earth orbit. The number of close approaches has risen significantly. On 22 June, NASA's Terra spacecraft had to execute a collision avoidance maneuver to evade a fragment from Fengyun-1C that was on a trajectory which would have passed within 19 meters of Terra.




(TRIAD 1 Debris)

1st EOS Aura DAM


- June 26, 2008
- Maximum Pc of 4.8-E-01 (about 1:2)
- Minimum miss distance about 11 meters
 - half the size of Aura
- Mitigated by 2.0 second (0.9 cm/sec)
 maneuver (#15 for the mission)
- Burn at TCA minus 24-hours
- Miss Distance based approach
- Miss distance → about 500 meters
- Miss distance needed to mitigate conjunction beyond 3-sigma combined covariance was about 150 meters

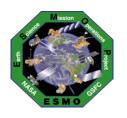

Jump forward 10-Years

Recent EOS Aqua Challenging Case Studies


Background

- ESMO Collision Risk Management (CRM) process currently being supported by two systems
 - NASA Conjunction Assessment and Risk Analysis (CARA) Team
 - SpaceNav Collision Risk Management System (CRMS)
- ESMO and CARA are working together to Devolve CARA Conjunction Analysis (CA) operations capabilities into the EOS Control Center
 - ESMO to transition exclusively to CRMS
 - ESMO currently in Pilot Program with CARA
- Some recent challenging High Interest Events (HIEs)
 - Aqua vs. 35917: TCA on 12/5/2017 at 05:27:59 GMT (Case Study #1)
 - Aqua vs. 37593: TCA on 7/12/2018 at 04:02:37 GMT (Case Study #2)

Case Study #1


Aqua vs. 35917

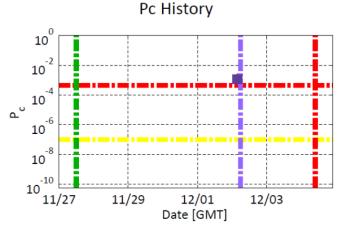
IRIDIUM-33 DEBRIS

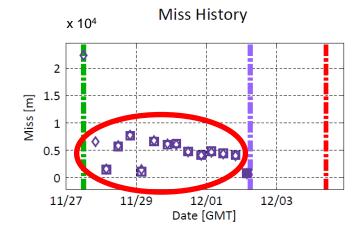
TCA: 2017-12-05 at 05:27:59 GMT

(IRIDIUM 33 DEB)

High Interest Event (HIE) Conjunction

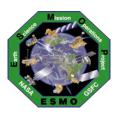
- 2.3-days to TCA (late/short notice?)
- TCA: 2017-12-05 at 05:27:59 GMT
- ASW Pc of about 1:859 (1.16E-3)
- ASW miss distance about 719 meters
 - Radial (R)

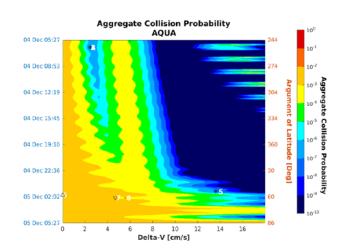

= 108.7 m

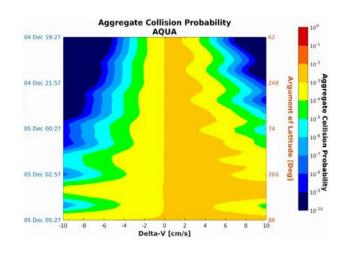

In-Track (I)

= -504.5 m

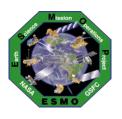
Cross-Track (C) = 501.2m

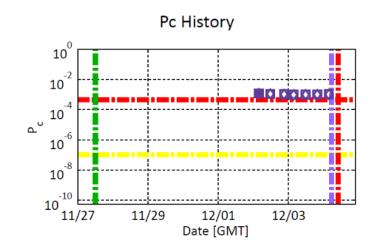

- Poorly tracked secondary (0.4 tracks/day)
 - Last Tracked 12/2 at 21:30z
 - 13.5 day OD Fit Span
- Tracked by a Single Station
- Relatively large RIC uncertainties
- Why the additional miss distance points?

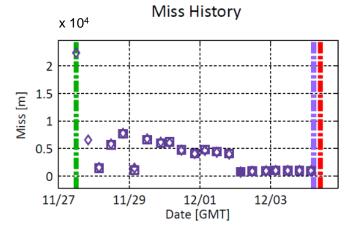



(Case Study #1)

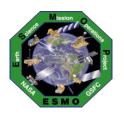
CRMS Maneuver Planning (Manual)


- Small maneuver Delta-V Budgets
 - » Center = 3.59 cm/sec
 - \sim -10 km = 4.89 cm/sec
 - \sim -20 km = 5.80 cm/sec
- Manually generated maneuver options
- Repeated process on Sunday and Monday
- Generated and screened 7 maneuvers
 - » Options 1-3: = above sizes
 - » Option 4: = 10.0 cm/sec
 - » Options 5-7: = 2.46, 7.0 & 13.78 cm/sec
- Even looked at retrograde maneuvers
- Predicted mild geomagnetic storm (G2)
- CARA High Interest Event (HIE) Briefing



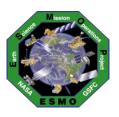

(Case Study #1)

No tracking for about 2-days?


- 0.25-days to TCA (about 6-hours)
- Single track by a single station
- ASW Pc of about 1:982 (1.02E-3)
- ASW miss distance about 960 meters
 - » Radial = 106.9m +/- 110.5m
 - \sim In-Track = -671.8m +/- 1175.6m
 - \sim Cross-Track = 673.0m +/- 352.1m
- 7 maneuver options screened
 - » Large enough maneuver to mitigate the risk will cause Aqua to exit its orbit science requirements for months
- Final CARA HIE Briefing
- Command Authorization Meeting (CAM)
- To maneuver or not to maneuver?

(Case Study #1)

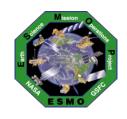
Final Decision at TCA minus 5.5-hours (12/5 at 0000z)


- CARA confirmed we passed last tracking opportunity with no new tracks on the secondary
- Based on poor OD quality, determined the best course of action was to monitor the conjunction through TCA and take no action

Notified NASA HQ and GSFC Management at TCA-4hr

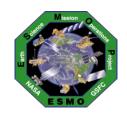
- Scheduled a real-time contact thru TCA to monitor the spacecraft
- Every HIE is a learning opportunity Questions:
 - Was the poorly tracked high-risk/small miss distance HIE
 Actionable
 - OD accuracy of single station tracked secondary object
 - What's a sufficient post-maneuver Pc to "drive to"
- Hindsight is always 20-20 (See Case Study #2)

Case Study #2

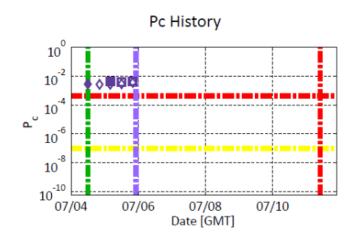

Aqua vs. 37593

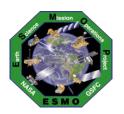
FENGYUN-1C DEBRIS

TCA: 2018-07-12 at 04:02:37 GMT


FENGYUN-1C DEB SUMMARY

A Challenging (?) High Interest Event (HIE) Conjunction

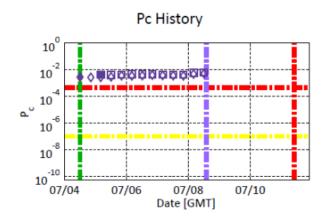

- TCA: 2018-07-12 at 04:02:37 GMT middle of the work week
- ASW Maximum Pc of about 1:158 (6.32E-3)
- ASW Minimum Miss Distance about 70.3 meters
 - » Radial (R), In-Track (I), Cross-Track (C) = 69.8m, 0.6m, -8.4m
- Poorly tracked secondary
 - » One track every 1.3 days (0.78 tracks/day)
 - » Tracked by a single station
 - » ~17-day Orbit Determination (OD) Fit Span
- RIC uncertainties
 - » CARA = 58.8m, 1573.7m, 518.4m (in conjunction plane)
 - » CRMS = 61m, 1604m, 24m (in body frame at TCA minus 6.9-days)
- Increased tasking requested and received
- Followed for entire 7-day screening period

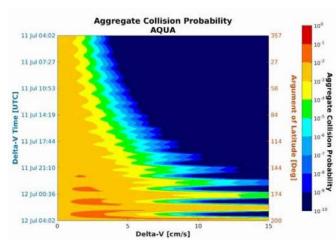


(Friday July 6th at 16:22 GMT: TCA minus 5.5-days)

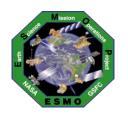
- No tracking for about 2 days
 - High-Risk/Low Miss Distance HIE
 - Tracked by a single station (0.7/day)
 - OD Fit Span of about 17-days
 - Last Tracked on 7/4 at 12:20 GMT
 - ASW Pc of about 1:275 (3.64E-3)
 - ASW Total Miss Distance about 112.7 meters
 - » Radial (R), In-Track (I), Cross-Track (C) = 87.8m, 6.9m, -70.3m
- MD Assessment: Ample time to work the conjunction starting Monday morning – TCA is Wednesday evening local (Thursday 7/12 GMT day at 04:02:37 GMT)
 - CRMS automatically starts generating maneuver options at TCA-3 days (AutoRMMs) <u>if secondary has been tracked in last 48-hours</u>

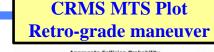
(Monday July 9th at 07:57 GMT: TCA minus 2.8-days)

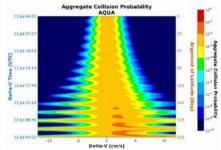

Overnight CARA Screening Report

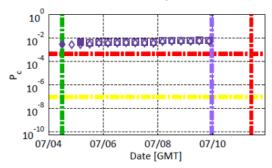

- No new tracking on secondary (4.8-days)
- ASW Pc of 1:194 (5.16E-3)
- ASW miss distance of 80.2 meters

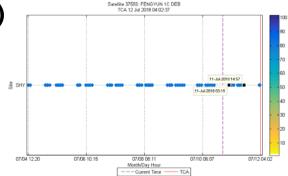
CRMS Maneuver Planning

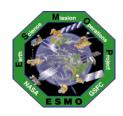

- 1st CRMS Maneuver Trade Space <u>manually</u> generated Monday afternoon around 2pm
- Small RMM/DAM Delta-V Budgets
 - Center, -10km, -20km about 2, 3, 4 cm/sec
- Mitigation near TCA requires a larger maneuver than RMM/DAM Delta-V Budget
- Obvious benefit to performing early DAM
- WAITING ON A NEW TRACK

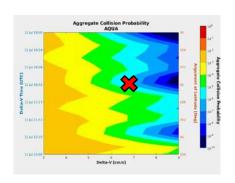

(Monday Afternoon July 9th from CARA Debrief)

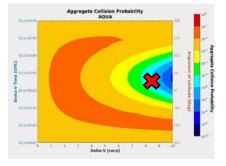

- CARA Assessment: 9 July Afternoon Screening:
 - Still no new tracking obtained; now 5 days since last track
 - Given average of about 1 track every two days, this is unexpected.
 However, the secondary was tasked at the highest level and single station tracked causing limited ability to further address the situation
- No ephemerides delivered via Aqua's automated RMM generation as expected
 - CARA routinely process RMM ephems from CRMS for high Pc events
- CARA sent initial notification email to the mission following standard process – Requests Timeline
 - If the event was deemed inactionable, this would have been stated in the notification email (IMPORTANT FACTOR about ASSUMPTIONS)
- Nominally, events identified as RED will require a mitigation maneuver


(Tuesday July 10th at 17:02 GMT: TCA minus 1.5-days)


- CRMS Manual Maneuver Planning
 - CRMS not generating AutoRMMs (<u>stale data</u>)
 - Small RMM/DAM Delta-V Budgets
 - » Center, -10km, -20km about 2, 3, 4 cm/sec
 - Manually Generated/Screened 0 maneuvers
 - » None were generated on Tuesday
- Significant internal (ESMO) discussion concerning the actionability of the conjunction (Secondary not tracked for 6-days)
- MD/ESMO Assessment: (2pm email to CARA)
 - CRMS/FOT CAE monitoring the conjunction
 - MD requested tracking opportunities to TCA →
 - Will provide maneuver options tomorrow

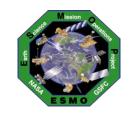

Pc History





No new tracking overnight 0.5-days to TCA

- 2 maneuver options generated and screened mid-day
 - » 6.8 cm/s on 7/11 at 20:40 GMT (drive to E-7 level)
 - » 8.5 cm/s on 7/12 at 03:12 GMT (drive to E-7 level)
 - » Large enough maneuver to mitigate the risk will cause Aqua to exit its orbit science requirements for months (No retro-grade maneuver capability)
- 2 maneuver options generated and screened during the early afternoon in anticipation of a potential track and reduction in the uncertainties but high enough risk to require maneuvering
 - » 3.0 cm/s on 7/12 at 03:12 GMT
 - » 4.0 cm/s on 7/12 at 03:12 GMT



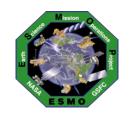
• 1:05pm EDT – MD/ESMO Assessment: Non-actionable

- Schedule 4:30pm EDT ESMO/CARA Meeting
- Request tracking history

(Wednesday July 11th 4:30pm ET CARA HIE Briefing)

Secondary Orbit Determination (OD) Discussion:

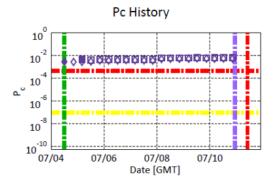
- Secondary last tracked on 7/4 about 7-days ago
- Object is not lost per discussion with CARA OSAs
- OD Span contains 13 tracks over 17 days
- OD Span is 17 days; EDR is 1E-4, At this EDR, OD Span is reasonable
- Given OD Span, time since last track not expected to degrade solution to inactionability
- Rule of Thumb: time since last track should not be longer than the LUPI (OD Span)


Actionability Recommendation:

CARA Operations and Analysis teams in agreement that this event is actionable

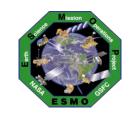
Summary & Recommendations:

- CARA considers this HIE actionable
- Recommends executing 8.5cm/sec DAM



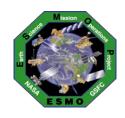
(Wednesday July 11th Evening at 7pm ET)

Command Authorization Meeting (CAM)


- TCA in about 9-hours at the CAM
- No tracking for 7+ days
- Single track by a single station
- ASW Pc of 1:192 (5.22E-3) at TCA-0.5^d
- ASW miss distance of 80.6 meters at TCA-0.5^d
 - \Rightarrow Radial = 75.7m +/- 58m
 - = 5.2m + /- 1626m
 - \sim Cross-Track = -27.2m +/- 23m
- Reviewed 4 maneuver options screened earlier
 - » 6.8 cm/s, 8.5 cm/s, 3.0 cm/s and 4.0 cm/s
- Reviewed 3 new maneuver options from HIEB
 - » 5.5cm/s, 6.5 cm/s and 7.5cm/s
- To maneuver or not to maneuver?

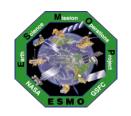
CARA Pc History Plot TCA-0.5

Total of 7 DAMs
Screened
6.8 (7/11) and 8.5
&
3.0 and 4.0
&
5.5, 6.5 and 7.5



(Wednesday July 11th Evening Post-CAM)

- Final Decision at TCA minus 4.5-hours (7/11 at 23:30z)
 - Execute 6.5 cm/sec DAM on 7/12 at 01:34:00 GMT (TCA 2.5 hours)
 - CARA confirmed we passed last tracking opportunity with no new tracks on the secondary
- ESMO Notified NASA HQ and GSFC Management
 - Maneuver to be executed in the blind
 - Ground station contact about 15-minutes after the maneuver
- MD Notified ESC/A-Train Member Missions
- Every HIE is a learning opportunity Some Questions
 - Was the poorly tracked high-risk/small miss distance HIE Actionable
 - OD accuracy of single station tracked secondary object
 - What's a sufficient post-maneuver Pc to "drive to"
- What have we learned



EOS High Interest Events Statistics

EOS Debris Avoidance Maneuvers

(2005 - 2018-08-30)

Year	Terra 25994	Aqua 27424	Aura 28376	Total
2005	1	0	0	1
2006	0	0	0	0
2007	1	0	0	1
2008	0	0	1	1
2009	0	1	0	1
2010	1	0	1	2
2011	0	3	0	3
2012	0	0	1	1
2013	3	4	1	8
2014	3	1	1	5
2015	2	0	0	2
2016	0	0	2	2
2017	1	0	1	2
2018	2	1	0	3
TOTAL	14	10	8	32

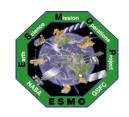
EOS Debris Avoidance Maneuvers

Mission O Toler

(2005 - 2014)

Maneuver Number	Primary Object	Secondary Object Number	Secondary Object Description	Maneuver Date	Time of Closest Approach (GMT)	Minimum Miss Distance Observed [m]	Maximum Pc Observed
1	Terra	14222	SCOUT G-1	21 Oct 2005	23 Oct 2005 20:53	37	8.20E-02
2	Terra	31410	Fengyun 1-C Debris	22 Jun 2007	23 Jun 2007 21:44	18	1.60E-01
3	Aura	1399	TRIAD 1 Debris	26 Jun 2008	27 Jun 2008 15:34	11	4.80E-01
4	Aqua	30420	Fengyun 1-C Debris	25 Nov 2009	26 Nov 2009 15:36	25	7.00E-02
5	Terra	34700	Iridium 33 Debris	22 Jan 2010	23 Jan 2010 20:46	244	5.70E-03
6	Aura	30262	Cosmos 2251 Debris	22 Nov 2010	24 Nov 2010 11:16	50	3.90E-02
7	Aqua	35957	Cosmos 2251 Debris	02 Jan 2011	05 Jan 2011 18:17	94	8.40E-03
8	Aqua	34494	Iridium 33 Debris	08 Feb 2011	08 Feb 2011 19:32	41	4.70E-02
9	Aqua	4917	Thorad Agena D Debris	01 Mar 2011	02 Mar 2011 02:45	204	3.41E-03
10	Aura	34574	Cosmos 2251 Debris	16 May 2012	17 May 2012 19:09	81	4.70E-04
11	Aqua	407	Thor Ablestar Debris	10 Mar 2013	12 Mar 2013 04:02	860	2.57E-03
12	Aqua	35733	Iridum 33 Debris	23 Mar 2013	24 Mar 2013 00:30	84	2.40E-02
13	Terra	12343	Cosmos 1174 Debris	24 Mar 2013	26 Mar 2013 04:24	113	2.38E-03
14	Terra	26209	CZ-4 Debris	18 Aug 2013	19 Aug 2013 07:43	79	6.72E-02
15	Aura	37765	SJ-11-02	02 Sep 2013	03 Sep 2013 04:02	320	2.23E-04
16	Aqua	34510	Iridium 33 Debris	25 Oct 2013	25 Oct 2013 04:27	689	8.99E-04
17	Terra	31201	Fengyun 1C Debris	17 Nov 2013	18 Nov 2013 05:42	272	1.01E-02
18	Aqua	35652	Cosmos 2251 Debris	28 Nov 2013	28 Nov 2013 22:28	373	6.41E-04
19	Terra	26347	CZ-4 Debris	10 Feb 2014	10 Feb 2014 11:52	152	1.24E-02
20	Terra	9040	Delta 1 Debris	21 Mar 2014	23 Mar 2014 00:17	50	2.35E-03
21	Aura	36712	Fengyun 1C Debris	29 Aug 2014	02 Sep 2014 12:32	408	1.19E-03
22	Aqua	81180	Unknown	21 Oct 2014	21 Oct 2014 04:17	4935	6.90E-04
23	Terra	35925	Iridium 33 Debris	31 Dec 2014	01 Jan 2015 06:24	206	9.67E-04

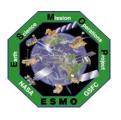
EOS Debris Avoidance Maneuvers


Mission Project

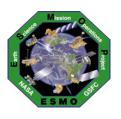
(2015 - 2018-08-30)

Maneuver Number	Primary Object	Secondary Object Number	Secondary Object Description	Maneuver Date	TCA (GMT)	Minimum Miss Distance Observed [m]	Maximum Pc Observed
24	Terra	35600	Cosmos 2251 Debris	27 May 2015	27 May 2015 23:13	57	1.86E-02
25	Terra	87692	AnalystSat	16 Jun 2015	16 Jun 2015 08:33	70	5.26E-02
26	Aura	34215	CBERS 1 Deb	18 Jan 2016	19 Jan 2016 01:17	143	1.57E-03
26	Aura	34726	COSMOS 2251 Deb	15 Mar 2016	16 Mar 2016 08:27	19	3.36E-01
28	Aura	25759	PSLV R/B	26 Mar 2017	26 Mar 2017 13:39	95	3.45E-02
29	Terra	35627	IRIDIUM 33 Deb	05 Jul 2017	06 Jul 2017 04:26	176	1.55E-03
30	Terra	33666	FENGYUN 1C Deb	15 Mar 2018	16 Mar 2018 17:35	245	1.97E-03
31	Aqua	37593	FENGYUN 1C DEB	12 Jul 2018	12 Jul 2018 04:02	74.4	5.59E-03
32	Terra	81010	UNKNOWN	10 Aug 2018	11 Aug 2018 19:50	43.4	2.09E-02

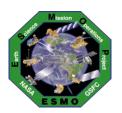
DAMs	Terra	Aqua	Aura	Total
Re-plans	25994	27424	28376	Iotai
TOTAL DAMS	14	10	8	32
Postponed and				
or re-planned	6	15	16	37
Maneuvers				



EOS Observations And Challenges


EOS Observations

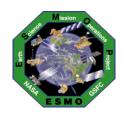
- Risk of an on-orbit collision between an operational mission and a piece of orbital debris is increasing
- Things will get worse before they get better
- Close approaches occur all the time
- Need to be able to plan and execute on short notice
 - Mission Operations Paradigm Shift
 From monitoring Mission Health and Safety to Mission Protection & Preservation of Orbital Environment
 - --- A risk to one is a risk to all ---


EOS Challenges

- Relatively short time frame to work the predicted close approaches
 - Dynamically changing
 - Often considerable uncertainties
- Spacecraft Constraints limit options
 - No retrograde maneuvers during science mission
- Mission Orbit Maintenance and Constellation Flying Requirements that limit response options
- Operational Constraints that determine minimum turnaround time
- Limited Resources

You know you're a Space Fence Junkie – IF

- You pointed out all the inconsistencies in the movie Gravity...the first time you watched it.
- You knew Pluto wasn't a planet the first time you 2. saw a drawing of the Solar System...in kindergarten.
- When you're stargazing with your friends, they ask you to name the constellations because you're more accurate than their Sky Map app.
- 4. You named your dog Hubble.



- In Boy Scouts/Girl Scouts, you earned your first badge from the NASA Orbital Debris Program Office.
- 6. You've scheduled your honeymoon in the Kwajalein Atoll in the Marshall Islands to coincide with the installation of the first Space Fence radar.
- You have a painting on your living room wall of astronaut Ed White's glove, the one he dropped
 while outside Gemini 4 in 1965, and that remained in orbit for a month. You lost a bid for his other glove on eBay.
- 8. You're a big Tyson fan... not Mike. Neil deGrasse.
- Your bedroom is modeled after the interior of the International Space Station.
- 10. You know Space Fence isn't really a fence.

Abbreviations/Acronyms List

A-Sat –	Anti-Satellite	FDS -	Flight Dynamics System	RMM -	Risk Mitigation Maneuver
ASW-	Astrodynamics Workstation	FOT –	Flight Operations Team	SAC-C -	Scientific Application
CA –	Conjunction Assessment	FST -	Flight Support Team		Satellite-C
CAE –	FOT Collision Avoidance	GMT -	Greenwich Mean Time	SCOUT -	Solid Controlled Orbital
	Engineer	GSFC -	Goddard Space Flight	CD.	Unity Test
CAM –	Command Authorization		Center	SP –	Special Perturbations
	Meeting	GTE –	Ground Track Error	TBD –	To Be Determined
CARA –	Conjunction Assessment	HIE –	High Interest Event	TCA –	Time of Closest Approach
CCDO	Risk Analysis	HIEB –	High Interest Event	TDRSS –	Tracking and Data Relay
CGRO –	Compton Gamma Ray Observatory		Briefing	TD1 (1) (Satellite System
CMOC -	Cheyenne Mountain	HQ –	Headquarters	TRMM –	Tropical Rainfall Measuring Mission
CIVIOC -	Complex	km –	kilometer	LICCTD A TO	COM – United States
CRMS –	Collision Risk Management	LUPI –	Length of Update Interval	USSIKAI	Strategic Command
014.10	System	MD –	Mission Director	UT –	Universal Time
DAM –	Debris Avoidance	MLT –	Mean Local Time	UTC –	Coordinated Universal
	Maneuver	MOWG –	Mission Operations	010	Time
DMUM -	Drag Make-up Maneuver		Working Group		
EDT –	Eastern Daylight Time	MTS –	Maneuver Trade Space		
EDR –	Energy Dissipation Rate	NASA –	National Aeronautics &		
EO-1 –	Earth Observing-1 Satellite	OD	Space Administration		
EOS –	Earth Observing System	OD –	Orbit Determination		
ESC -	Earth Science Constellation	OSA –	Orbital Safety Analyst		
ESMO –	Earth Science Mission	Pc –	Probability of Collision		
	Operations	RIC –	Radial, In-track, Cross-		
			Track		