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Understanding the structure and composition of the lunar interior is a fundamental goal in furthering our knowledge of the formation and Figure 5. AB, = -8 nT
subsequent evolution of the Earth-Moon system. Among various methods, electromagnetic sounding is a valuable approach to constraining B t= 20 sec B, t=220 sec (nT]
lunar interior structure. Recent analyses of plasma and field observations provide a wealth of understanding about the dynamics of the lunar : =t P l:
plasma environment. To perform Time Domain EM (TDEM) Sounding at the Moon, the first step is to characterize the dynamic plasma § m _ |
environment, and to be able to isolate geophysically induced currents from concurrently present plasma currents. The TDEM Sounding transfer Resistive z EA @ -.f/\
function method focuses on analysis of the nightside observations when the Moon is immersed in the solar wind. This method requires two ] >
simultaneous observations: an upstream reference measuring the pristine solar wind, and one downstream at or near the lunar surface. This ° L psESEareiTas
method was last performed during Apollo and assumed the induced fields on the nightside of the Moon expand as in an undisturbed vacuum c
within the wake cavity. Our results indicate that EM sounding of airless bodies in the solar wind must be interpreted via self-consistent plasma i m
models in order to untangle plasma and induced field contributions, with implications not only at the Moon but at all airless bodies exposed to Conductive g e @
the solar wind. Nightside TDEM sounding has the capability to advance the state of knowledge of the field of lunar science. This requires N>
magnetometer operations to withstand the harsh conditions of the lunar night. >
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Summary

Day and Nightside plasma conditions are distinct.
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Differences in Apollo Day and Nightside EM Sounding analyses remain over an order of magnitude in mantle conductivity.
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Solar wind and plasma wake processes are better characterized than other plasma locations (such as the Magnetotail),
providing the ideal location for two point EM Sounding analyses.

Figure 3. (a) TDEM Sounding requires an observer at or near
} the lunar surface (B,) and a reference well outside of lunar
effects (Bg). The induced magnetic field, B, , opposes the
external field, B;. Boundary conditions vary: (b) vacuum, (c)
Solar wind varies day and night-side confinement [7].
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Nightside magnetometer observations are critical to fully characterizing the lunar subsurface.
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