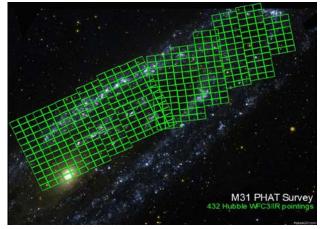


Orbital Maintenance for the Wide Field Infrared Survey Telescope: Effects of Solar Radiation Pressure and Navigation Accuracies on Stationkeeping

2018 AAS/A AA Astrodynamics Specialist Concert

Ariadna Farres Cassandra Webster Jennifer Donaldson Dave Folta LO 0 \mathbf{O} O \bigcirc ()

NAVIGATION & MISSION DESIGN BRANCH NASA GSFC



- Wide Field Infrared Survey Telescope (WFIRST)
- Force Models and Stationkeeping Strategy
- Modeling Solar Radiation Pressure (SRP)
- SRP Effect on Stationkeeping
- Navigation Errors Effect on Stationkeeping
- Conclusions and Future Work

Wide Field Infrared Survey Telescope

- Scheduled to launch in 2025 to an orbit about the Sun-Earth Libration Point 2 (SEL2)
- 2.4 meter primary mirror along with a Wide Field Instrument (WFI) will be used to scan up to 100x more sky than Hubble
- Coronograph Instrument (CGI) will be used to search for exoplanets
- Mission Objectives:
 - Explore exoplanets
 - Research into dark energy
 - Perform galactic and extragalactic surveys

Goal of the work

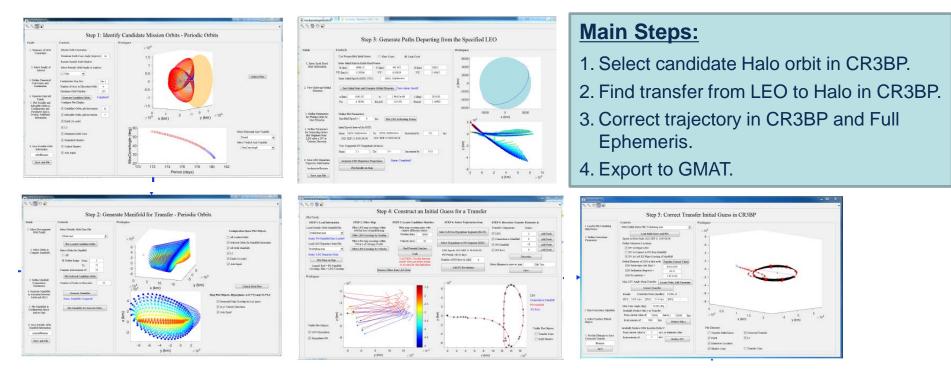
- WFIRST will be orbiting at Sun-Earth L2 around a Quasi-Halo orbit. To deal with the instability of the environment, and remain close to its nominal orbit, stationkeeping maneuvers will be performed every 21 days.
- Routine Momentum Unloads (MUs) will be performed to unload the stored momentum in the reaction wheels.
- The effect of Solar Radiation Pressure (SRP) on the stationkeeping Δv has been explored using different SRP models.
- The effect of Orbit Determination and Navigation errors, and maneuver execution errors on the stationkeeping Δv has also been explored.

Force Models

Circular Restricted Three Body Problem (RTBP)

$$\ddot{R} + 2\omega \times \dot{R} = \nabla \Omega + a_{srp}$$

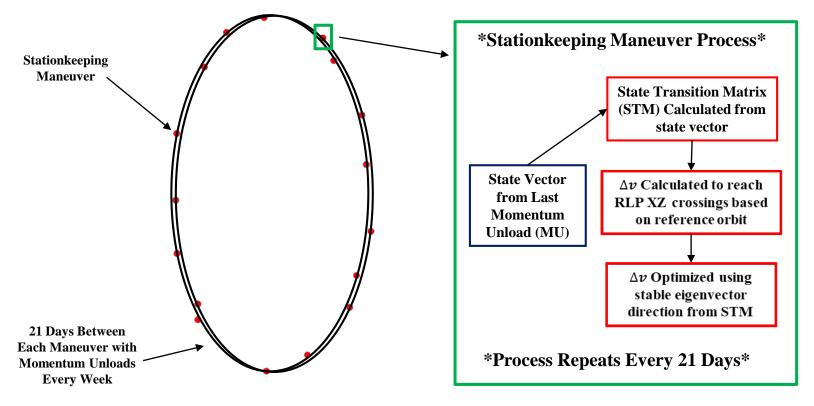
where $\mathbf{R} = (X, Y, Z)$ is the location of the satellite, $\Omega = \frac{1}{2}(X^2 + Y^2) + \frac{1-\mu}{r_{ps}} + \frac{\mu}{r_{pe}}$ is the gravitational potential, and $\mathbf{a}_{srp} = (a_X, a_Y, a_Z)$ is the SRP acceleration.


Point Mass Ephemeris Model

$$\mathbf{R}_{S,sc}^{"} = Gm_S \frac{\mathbf{R}_{S,sc}}{R_{S,sc}^3} + Gm_E \left(\frac{\mathbf{R}_{E,sc}}{R_{E,sc}^3} - \frac{\mathbf{R}_E}{R_E^3}\right) + Gm_M \left(\frac{\mathbf{R}_{M,sc}}{R_{M,sc}^3} - \frac{\mathbf{R}_M}{R_M^3}\right) + \mathbf{a}_{srp},$$

where $\mathbf{R} = (X, Y, Z)$ is the location of the satellite, $\mathbf{R}_i = (X_i, Y_i, Z_i)$ is the position of the Sun-Earth and Moon (i = S, E, M), and m_S, m_E, m_M their respective masses.

Adaptive Trajectory Design (ATD) module


 The baseline trajectory for WFIRST has been computed with the ATD Module developed by Dr. Natasha Bosanac [1].

[1] N. Bosanac, C. M. Webster, K. Howell and D. C. Folta, *"Trajectory Design and Station-Keeping Analysis for the Wide Field Infrared Survey Telescope Mission"*, in AAS/AIAA Astrodynamics Specialist Conference, 2017.

Stationkeeping Strategy

 We use information from the natural dynamics around a Halo orbit to determine the stationkeeping maneuver.

Solar Radiation Pressure Models

• Cannonball Model (simple) the satellite's shape is approximated by a sphere:

$$\boldsymbol{a}_{srp} = -\frac{P_{srp}C_rA_{sat}}{m_{sat}}\boldsymbol{r}_s.$$

 N-plate Model (intermediate) the satellite's shape is approximated by a set of flat plates, each one with different reflectivity properties:

$$\boldsymbol{a}_{srp} = -\frac{P_{srp}}{m_{sat}} \sum_{i=1}^{N} \left(A_i \langle \boldsymbol{n}_i, \boldsymbol{r}_s \rangle \left[\left(1 - \rho_s^i\right) \boldsymbol{n}_i + 2\left(\rho_s^i \langle \boldsymbol{n}_i, \boldsymbol{r}_s \rangle + \frac{\rho_d^i}{3}\right) \boldsymbol{r}_s \right] H(\theta_i) \right).$$

 Finite Element Model (high-fidelity) a CAD model is used to approximate the satellite's shape and ray-tracing techniques are used to approximate the SRP acceleration:

$$\boldsymbol{a}_{srp} = -\frac{P_{srp}}{m_{sat}} \int_{\partial \Omega} A \langle \boldsymbol{n}, \boldsymbol{r}_{s} \rangle \left[(1 - \rho_{s}) \boldsymbol{n} + 2 \left(\rho_{s} \langle \boldsymbol{n}, \boldsymbol{r}_{s} \rangle + \frac{\rho_{d}}{3} \right) \boldsymbol{r}_{s} \right] d\Omega.$$

[2] A. Farres, D. C. Folta and C. Webster, "Using Spherical Harmonics to Model Solar Radiation Pressure Accelerations," in AAS/AIAA Astrodynamics Specialist Conference, 2017.

Comparison between SRP models

- The main difference between the Cannonball and the N-plate model is that it does not account for the satellite's attitude.
- The 14-plate approximation for WFIRST shows good agreement with the Finite Element approximation.

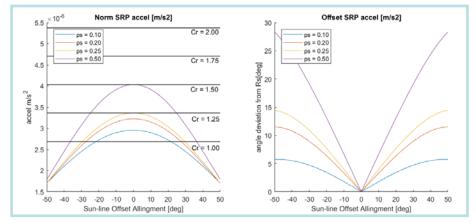
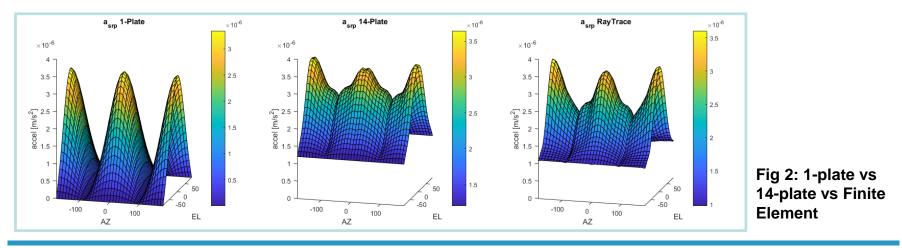



Fig 1: Cannonball vs 1-plate Model.

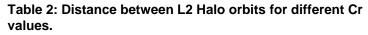
Effect of SRP on LPOs

The extra acceleration due to SRP essentially displaces the invariant objects toward the Sun.

2.7

2.6

2.5


2.4 Ex 2.3

1.9

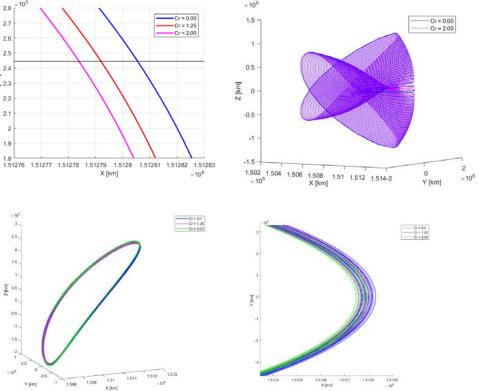

N 22 2.1

Table 1: Relationship between the location of L2 and Cr values.

C _r	q _{srp}	L ₂ location
$C_{r}^{0} = 0.00$	0.0	151,105,099.17 km
<i>C</i> ¹ _{<i>r</i>} = 1.25	$5.7799 imes 10^{-5}$	151,104,145.49 km
$C_r^2 = 2.00$	9.2472×10^{-5}	151,103,573.97 km

	$C_r^0 - C_r^1$	$C_r^0 - C_r^2$	$C_r^1 - C_r^2$
RTBP	1,300 km	2,000 km	800 km
Ephem	1,430 km	2,400 km	930 km

Effect of SRP on Stationkeeping

- Using the ATD module, two different reference orbits have been generated: one with $C_r = 0.0$ and another with $C_r = 2.0$.
- For each reference, orbit 5 simulations for stationkeeping over 5 years have been performed using three different C_r values $(C_r = 0.0, 1.25 \text{ and } 2.0)$ and different MUs sizes (1.3 mm/s and 13.3 mm/s).
- Results show that following the reference orbit with the same C_r value helps lower the total Δv cost.
- Increasing the size of the MUs increases the Δv cost, and the accuracy in SRP models is less relevant.

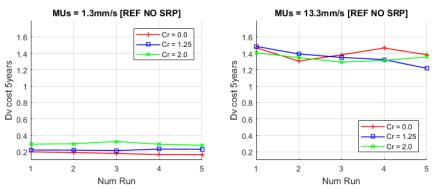


Fig 1. Total Δv cost for 5 years stationkeeping simulations using a No SRP reference trajectory for different Cr values.

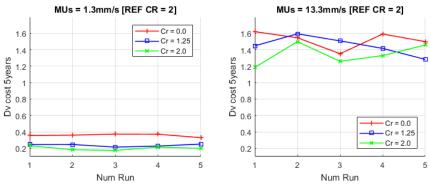


Fig 2. Total Δv cost for 5 years stationkeeping simulations using an SRP reference trajectory for different Cr values.

Effect of SRP on Stationkeeping

- Using a reference trajectory the same as in the previous examples ($C_r = 2.0$ with cannonball SRP).
- 5 simulations for stationkeeping over 5 years have been performed with different fixed offset angles and MUs sizes (1.3 mm/s and 13.3 mm/s).
- Results show that large offset angles result in larger total Δv cost.
- Increasing the size of the MUs increases the Δv cost, and the accuracy in SRP models is less relevant.
- Explorations with variable attitude will be done in the future.

Table 3: Total stationkeeping $\Delta v \cos t$ with no MUs for a fixed plate offset.

Offset Angle	Total ∆v
$lpha = 0^o$	0.1287 m/s
$lpha = 10^o$	0.1355 m/s
$lpha = 20^o$	0.1848 m/s
$\alpha = 40^{o}$	0.2754 m/s

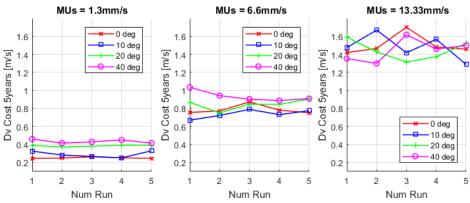
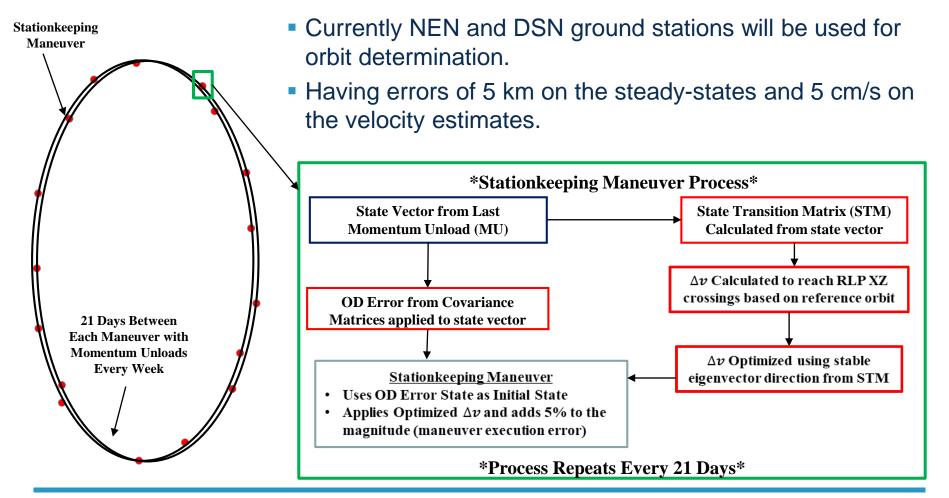



Fig 3. Total Δv cost for 5 years stationkeeping simulations using 1-plate model for SRP for different fixed offset angles.

Effects of Navigation Errors on Stationkeeping

Effects of Navigation Errors on Stationkeeping

- Four different cases have been analyzed: with no SRP ($C_r = 0.0$) and SRP ($C_r = 2.0$), each one taking different MUs sizes (1.3 mm/s and 13.3 mm/s).
- 10 simulations using the cannonball model for SRP have been performed including random OD errors and maneuver execution errors for 1 year of stationkeeping.

Analysis Case	<i>C_r</i> Value Used in Analysis and Reference Orbit	Momentum Unload Residual ∆ <i>v</i> (mm/s)	Maximum Position OD Error (km)	Maximum Velocity OD Error (cm/s)	Average Total Stationkeeping ∆v for 1 Year (m/s)
1	0	1.33	9.57	3.22	1.12
2	0	13.33	12.81	3.83	1.20
3	2	1.33	13.72	4.04	1.06
4	2	13.33	10.75	4.53	1.16

Table 4. Stationkeeping Δv with Orbit Determination Errors and Cannonball SRP Model.

Effects of Navigation Errors on Stationkeeping

 8 different cases have been analyzed using a 1-plate model for SRP: taking different fixed offset angles, each one taking different MUs sizes (1.3 mm/s and 13.3 mm/s).

Analysis Case	1-Plate Offset Angle (°)	Momentum Unload Residual ∆v (mm/s)	Maximum Position OD Error (km)	Maximum Velocity OD Error (cm/s)	Average Total Stationkeeping ∆v for 1 Year (m/s)
1	0	1.33	8.43	3.14	0.92
2	0	13.33	10.62	4.09	0.99
3	10	1.33	11.31	4.62	0.91
4	10	13.33	9.82	3.87	0.97
5	20	1.33	7.64	4.17	0.89
6	20	13.33	16.27	4.54	1.02
7	40	1.33	10.94	3.75	0.88
8	40	13.33	12.03	4.03	0.95

Conclusions and Future Work

- We have analyzed how SRP acceleration uncertainties, the size of MUs and OD errors affect WFIRST's total Δv for stationkeeping.
- <u>Simulations without OD errors</u>: agreement between the SRP model and reference orbit help lower the Δv cost. Moreover, large MUs increase the total Δv .
- <u>Simulations with OD errors</u>: the OD errors introduced are similar in size to the individual stationkeeping maneuvers. Better navigation errors (either using more tracking or Onboard OD) may reduce the total stationkeeping maneuver Δv.
- The total stationkeeping Δv increased significantly when OD errors were introduced vs. when just looking at SRP and MU sizes.
- In the future, using a variable attitude profile for WFIRST, the effects of SRP can fully be studied as WFIRST moves through its orbit with different orientations.

Thank you for your attention

