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Background
• Distributed Spacecraft Missions: multiple spacecraft coordinate 

to perform shared objectives
• Current approaches for Multi-Vehicle Mission (MVM) design prone 

to:
– Laborious iterative steps
– Treatment of the MVM as multiple, separate sub-problems
– Poor handling of coordination objectives & constraints 

• No Multi-Objective, Multi-Agent Hybrid Optimal Control 
Problem (MOMA HOCP) mission design platforms



Overview
1. MOMA HOCP Architecture
2. Coordination Constraints & Objectives
3. Results

a) Validate basic functionality by reproducing Cassini cruise
b) Ice Giant Multi-Mission design

4. Future work



MOMA HOCP Formulation
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Outer-Loop Transcription

Stay Tuned

<     HEADER    > , <      FLYBY SEQUENCE       >

Null Gene transcription enables insertion & 
deletion of genes by inner-loop while maintaining 
fixed chromosome size in outer-loop2



Novel Outer-Loop Constraints
• Shared Launch Vehicle

– Multiple spacecraft constrained to share a launch vehicle
– [𝐿𝑊$	, 𝐶(,$	, 𝑅𝐿𝐴$	, 𝐷𝐿𝐴$] identical for 𝑖 = 1,2, … , 𝑁 spacecraft in fleet
– Xinner-loop =[ <shared vars. header> , <S/C #1 unique vars. > , <S/C #2 unique 

vars.>, … ]
• Minimum # of Shared Flyby Genes

– Encoded in outer-loop header
– All S/C must share some number of flyby target genes

• Minimum # of Shared Trajectory Phases
– After NULL flybys ignored, remaining identical flyby targets constrained to have 

identical shared trajectory phases
• Coordinated Objective: Minimax TOF



Outer-Loop Multi-Objective Optimizer
• Non-Dominated Sorting Genetic Algorithm 

(NSGA-II)
• Finds Pareto front spanned by all objectives in 

multi-objective problem
• Ranking performed by Pareto criterion and 

crowded tournament selection
• Cap & Optimize approach to efficiently optimize 

multiple objectives for the price of one3

1. Inner-Loop optimizes one objective 
2. Outer-loop sets caps on secondary 

objectives, constraining inner-loop problem
3. Inner-loop returns solution to outer-loop
4. Outer-loop extracts secondary objectives’ 

cost & ranks population 

Pareto Front concept13



Inner-Loop Global Search Algorithm
• Monotonic Basin Hopping 

(MBH)
• 4 parameters:

– Max # global hops
– Max run time
– Local hop size
– Max # local hops 

• Not always used with a local 
optimizer, but addition of 
local optimizer proved 
effective

After local 
optimization

After local optimization

MBH illustration13



Trajectory Transcription

Multiple Gravity Assists with 1 Deep
Space Maneuver (MGA1DSM)
Transcription illustration developed
by Izzo et al. 8



Reproducing Cassini’s Cruise with MBH+DE Inner-Loop

Solution (green) overlaying pre-launch Cassini design.
Launch window: 10/1–10/31 1997. Solution used 696 m/s
∆𝑽 v. pre-launch design’s 550 m/s. Event dates varied by
±15 days.



Ice Giant Multi-Mission Analysis
• Voyager era conjunction geometry 

between Uranus & Neptune will not recur 
until ~2148

• Hughes et al. showed no opportunities for 
one spacecraft to visit Uranus & Neptune 
between 2020 – 20701

• 2 options:
– 2 separate missions
– 1 dual-spacecraft launch (high risk, 

nigh infeasible, highest science return)
• Studies

– Shared launch vehicle only constraint 
(SHLV)

– Shared launch vehicle + shared flyby 
genes constraint (SHFB)

– Shared launch vehicle + shared 
trajectory phases constraint (SHTR)



Low C3 SHFB Pareto Front

Marker size: 
#intermediate 
flybys



Low C3 SHFB Minimum ∆𝑉 Solution



High C3 SHFB Pareto Front

Marker size: 
#intermediate 
flybys



SHFB Pareto Front v. Launch Date

Marker size: #intermediate flybys



High C3 SHFB Minimum ∆𝑉 Solution



Future Work
• Results are promising, but far from optimal
• Needs:

– More robust, reliable inner-loop 
– Larger outer-loop population size
– Greater distributed computing resources

• Future work:
– Address needs
– Explore new classes of MVMs
– Explore more coordination constraints & objectives
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Appendix



Outer-Loop Multi-Objective Optimizer
• Non-Dominated Sorting Genetic Algorithm 

(NSGA-II)
• Finds Pareto front spanned by all objectives in 

multi-objective problem
• Ranking:

– Pareto criterion assigns front rank
𝑋$ dominates 𝑋8 if  ∀	𝑓 𝑋$ ≤ 𝑓 𝑋8 	^	∃	𝑓 𝑋$ < 𝑓(𝑋8)	

– Crowded comparison operator maximizes diversity on 
front

𝑟BC,$ = min 𝑛𝑜𝑟𝑚 𝑓 𝑋$ − 𝑓 𝑋8

• Where 𝑓 is the vector of objectives evaluated on a 
candidate solution X

• 𝑗 ≠ 𝑖 and 𝑗 = 1:𝑁 members of the front
• Dominant individuals have longest crowding distance 

with their nearest neighbors

Pareto Front concept13



Outer-Loop Multi-Objective Optimizer
• Cap & Optimize approach to efficiently 

optimize multiple objectives 3
– Inner-Loop only optimizes one objective (time-

consuming)
– However, solution carries cost info for numerous 

secondary objectives
1. Outer-loop sets caps on secondary objectives, 

constraining the inner-loop problem
2. Inner-loop returns solution to outer-loop
3. Outer-loop extracts secondary objectives’ cost 
4. Outer-loop performs non-dominated sort & 

crowded comparison to rank population of 
candidate solutions 

– Result: M objectives for the price of one

Pareto Front concept13



Inner-Loop Local Optimizer
• Version 1: Differential Evolution (DE/best/2/bin) with mutation 

operator
– DE/best/2/bin originally used as full inner loop
– Replaced by MBH, but nesting together proved better performance than 

either separately
• Version 2: fmincon() with mutation enables linear constraints and 

faster local optimization 
• Objective: minimize ∆V of spacecraft fleet
• Constraints: 

– Global TOF, launch window, etc specified by outer-loop



Shared Launch Vehicle Constraint
• Multiple spacecraft constrained to share a launch vehicle
• [𝐿𝑊$	, 𝐶(,$	, 𝑅𝐿𝐴$	, 𝐷𝐿𝐴$] identical for 𝑖 = 1,2, … , 𝑁 spacecraft in fleet
• Outer-loop header enforces LW & C3 bounds genes to be identical
• Genetic crossover constraint forces genes to mate identically
• Inner-loop chooses launch date, C3, RLA & DLA

Inner loop vector: 
[ <shared param header> , <S/C #1 unique params> , <S/C #2 unique params>, … , 
<S/C #N unique params> ]



Minimum # Shared Flyby Genes Constraint
• Voyager spacecraft performed staggered flybys of Jupiter and 

Saturn to leverage favorable turning angles 
• Constraint requiring minimum # of shared flyby genes in outer-loop 

vector incentivizes exploring different, interesting decision space
• Constraint is encoded in outer-loop header

– # of minimum shared flyby genes chosen from outer-loop decision menu
– Genes have 50% chance of being NULL; ignored  by inner loop
– May result in fewer actual duplicate flyby targets than # specified in outer-

loop 



Minimum # Shared Trajectory Phases Constraint
• Require all S/C in fleet to fly same trajectory for a specific number of 

flybys
• Can only be switched on if minimum shared flyby genes constraint also 

on
• Enforced by inner-loop

– After NULL flybys ignored, remaining identical flyby targets constrained to have 
identical shared trajectory phases

– 2D hybrid vector transforms to 1D vector:
– Xinner loop = [ <shared param header> , <S/C #1 unique params> , <S/C #2 unique 

params>, … , <S/C #N unique params> ]



Coordination Objective Approach
• How to couple cost of each S/C?
• Minimax approach in outer-loop, i.e., “weakest link”
• Example: TOF cost for entire fleet = max TOF w/in fleet
• Result: each S/C in fleet forced to reduce TOF
• Can be applied to any number of outer-loop objectives
• Effective approach in integer genetic algorithms
• Separate challenge to implement for gradient-based optimizer



Reproducing Cassini’s Cruise
• Test of MBH+DE 

inner-loop
• Launch window: 

Oct 1 – Oct 31 
1997

• TOF phases 
bounded ±10 
days from 
nominal Cassini 
phase TOF

• No initial guess 
provided

Cassini pre-launch nominal design14



Reproducing Cassini’s Cruise
• Cassini-like solution used 696 

m/s ∆𝑉 versus pre-launch design 
of 550 m/s

• Launch, flyby, and encounter 
dates varied by ±15 days

• Longer run time may marginally 
improve solution, as might 
multiple separate inner-loop runs, 
but reliability is ultimately tuning 
problem

Inner-loop solution (green) overlaying pre-launch Cassini 
design



Low C3 SHTR Pareto Front (no near-feasible solutions)

Marker size: 
#intermediate 
flybys



High C3 SHLV Pareto Front

Marker size: 
#intermediate 
flybys



High C3 SHLV Minimum ∆𝑉 Solution


