

Change of Inertia Tensor Due to a Severed Radial Boom for Spinning Spacecraft

Joseph E. Sedlak * Babak Vint * (presenter)

* a.i. solutions, Inc.

Spin-Stabilized Spacecraft

- Gyroscopic action
- Easy to tension long wire booms due to centrifugal force
- Magnetic and electric fields, plasma, etc.
- Thin boom structure can be a risk

History of Radial Boom Breakage

- Fast Auroral SnapshoT (FAST)
 - 1996: Deployment failure
- Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)
 - 2000: -X antenna damage
 - 2001: +Y antenna damage
 - 2004: ⁺Y antenna damage (again)
- ARTEMIS P1 (formerly THEMIS B)
 2010

Image from https://www.nasa.gov/vision/universe/solarsystem/fast_10yr.html

Boom Contribution to Moment of Inertia

- Change in mass may be negligible (100 g lost versus 1,400 kg spacecraft)
- Mass moment increases with square of distance

$$J = mr^2$$

• At a radius of 100 m, a 100 g mass contributes 1,000 $kg \cdot m^2$ (typical total moment of inertia could be 5,000 $kg \cdot m^2$)

Motivation

- 1. Impact of radial boom anomaly to mass moment of inertia tensor is significant
- While inertia tensor is not directly observable, direction of Major Principal Axis (MPA) is observable for some missions
- 3. Location of break along boom should be related to some change in MPA

Assumptions

- 1. Motion is steady-state, all vibrations damped
- 2. With no internal motion, inertia tensor is same as a rigid body
- 3. Torque-free motion
- 4. Given (1), (2), and (3): *MPA*, angular velocity $\vec{\omega}$, and angular momentum \vec{L} all coincide

Magnetospheric MultiScale (MMS) Mission

- Spin-plane Double Probe (SDP)
- Axial Double Probe (ADP)
- Analog Flux Gate (AFG)
- Search Coil Magnetometer (SCM)
- Digital Flux Gate (DFG)
- Electron Drift Instrument (EDI)

The main coordinate system considered is the Observatory Coordinate System (OCS)

Figure used with permission of University of New Hampshire MMS-FIELDS team

7/24

Existing MMS Attitude Ground System (AGS)

- Based on a software suite that has been used for many missions
- Center of Mass (CM) and inertia tensor models developed specifically for MMS
 - Use pre-launch determined values
 - Account for deployment status of booms
 - Assume nominal spin axis (OCS Z-axis)
- Inertia tensor calibration (fuel asymmetry)

Proposed Improvements

- Account for directions of booms at steady-state
 - Net torques and forces are zero
 - Radial to spin vector, not Z-axis
 - "Radial" = intersecting + perpendicular
- Account for mutual dependence of boom directions and MPA
- Account for fully or partially severed boom(s)

Big Picture of Improved Model

"Inner" Iteration

Inertia Tensor (1 of 2)

- \hat{b} and *CM* must be given (and f_b and f_f)
- "Build" inertia tensor of system from constituents that have known inertia tensors
 - Spacecraft body
 - Basic 3D solids (thin rod, sphere, cylinder)
- Parallel axis theorem translates inertia tensor to/from center of mass and arbitrary point

Inertia Tensor (2 of 2)

- Boom Direction Coordinate System (BDCS) $\begin{bmatrix} J_{axial} & 0 & 0 \\ 0 & J_{transverse} & 0 \\ 0 & 0 & J_{transverse} \end{bmatrix}$
- Change tensor orientation via similarity transformation

$$A_{BDCS\leftarrow OCS} = f(\hat{b})$$

$$A = A_{BDCS\leftarrow OCS}^{T}$$

$$J_{OCS} = A J_{BDCS} A^{T}$$

- Overall process:
 - 1. Build each boom tensor (parallel axis theorem)
 - 2. Transform each boom tensor from *BDCS*_{boom} to OCS
 - 3. Build total spacecraft tensor (parallel axis theorem)

"Outer" Iteration (1 of 2)

"Outer" Iteration (2 of 2)

- Accelerated method converges in approximately $^{1}\!/_{10}$ to $^{1}\!/_{3}$ the number of iterations
- Based on assumption that error decreases roughly as a geometric progression ($\epsilon = ar^n$; |r| < 1)
- Related to Aitken's δ^2 -process (a.k.a. Aitken extrapolation)

Big Picture of Improved Model (Review)

Results (1 of 5)

Suppose a coordinate system has its X-axis parallel to the nominal direction of the severed boom. Let φ_1 and φ_2 define the "tilt" of the MPA from the OCS Z-axis.

Results (2 of 5)

Results (3 of 5)

- Uncertainty in *MPA* is approx. 0.003° (3 σ)
- Let Φ denote the change in *MPA* due to break
- Uncertainty in Φ is approx. 0.006° (3 σ)
- Let *X* denote the break location, measured in meters from the attachment point of the boom
- Want to know uncertainty ΔX given uncertainty $\Delta \Phi$
- First order approximation:

$$\Delta X \approx \left| \frac{d\Phi}{dX} \right|^{-1} \Delta \Phi$$

Results (4 of 5)

Results (5 of 5)

Approximate values for 3σ uncertainty in break location for various regions of the boom.

Break Region	3σ Uncertainty
Near Boom Attachment	6 m
Near Boom Midpoint	50 cm
Near Boom Tip	20-30 cm

MMS Application

- Predictive products:
 - Rigid body inertia tensor is used to calculate gravity gradient torque
- Definitive products:
 - Extended Kalman Filter (EKF) uses inertia tensor in propagation step
- Mass properties
 - CM and rigid body inertia tensor are reported for onboard use

Future Work

- Investigate whether choice of independent variable(s) (φ_1 , φ_2 , ΔMPA) affects accuracy of boom fraction mapping
- Implementation is already generalized for multiple breaks (f_b is a row vector)
 - May result in ambiguous solutions
 - Requires analysis
- Model boom deployment failure (requires little modification)
- Incorporate new model into inertia tensor calibration tool

Summary

- The effects of a radial boom break were shown to be observable and quantifiable
- An improved model for CM and inertia tensor was developed for the MMS mission
- Based purely on attitude observations, location of boom break can be estimated to within a small uncertainty

Questions

Figure used with permission of University of New Hampshire MMS-FIELDS team

Backup Slide: Why MPA, $\vec{\omega}$, and \vec{L} Coincide

- 1. \vec{L} is fixed relative to space
- 2. *MPA* is fixed relative to the body
- 3. $\vec{\omega}$ nutates, tracing out "body cone" and "space cone"
- 4. Nutation of $\vec{\omega}$ induces internal motion
- 5. If all motion is damped, $\vec{\omega}$ is no longer nutating (angle between vectors is zero)

