Change of Inertia Tensor Due to a Severed Radial Boom for Spinning Spacecraft

Joseph E. Sedlak * Babak Vint * (presenter)

* a.i. solutions, Inc.

Spin-Stabilized Spacecraft

- Gyroscopic action
- Easy to tension long wire booms due to centrifugal force
- Magnetic and electric fields, plasma, etc.
- Thin boom structure can be a risk

History of Radial Boom Breakage

- Fast Auroral SnapshoT (FAST)
- 1996: Deployment failure
- Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)
- 2000: -X antenna damage
- 2001: +Y antenna damage
- 2004: ${ }^{+}$Y antenna damage (again)
- ARTEMIS P1 (formerly THEMIS B)
- 2010

Boom Contribution to Moment of Inertia

- Change in mass may be negligible (100 g lost versus $1,400 \mathrm{~kg}$ spacecraft)
- Mass moment increases with square of distance

$$
J=m r^{2}
$$

- At a radius of 100 m , a 100 g mass contributes $1,000 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ (typical total moment of inertia could be $5,000 \mathrm{~kg} \cdot \mathrm{~m}^{2}$)

Motivation

1. Impact of radial boom anomaly to mass moment of inertia tensor is significant
2. While inertia tensor is not directly observable, direction of Major Principal Axis (MPA) is observable for some missions
3. Location of break along boom should be related to some change in MPA

Assumptions

1. Motion is steady-state, all vibrations damped
2. With no internal motion, inertia tensor is same as a rigid body
3. Torque-free motion
4. Given (1), (2), and (3): MPA, angular velocity $\vec{\omega}$, and angular momentum \vec{L} all coincide

Magnetospheric MultiScale (MMS) Mission

- Spin-plane Double Probe (SDP)
- Axial Double Probe (ADP)
- Analog Flux Gate (AFG)
- Search Coil Magnetometer (SCM)
- Digital Flux Gate (DFG)
- Electron Drift Instrument (EDI)

Figure used with permission of University of New Hampshire MMS-FIELDS team

Existing MMS Attitude Ground System (AGS)

- Based on a software suite that has been used for many missions
- Center of Mass (CM) and inertia tensor models developed specifically for MMS
- Use pre-launch determined values
- Account for deployment status of booms
- Assume nominal spin axis (OCS Z-axis)
- Inertia tensor calibration (fuel asymmetry)

Proposed Improvements

- Account for directions of booms at steady-state
- Net torques and forces are zero
- Radial to spin vector, not Z-axis
- "Radial" = intersecting + perpendicular
- Account for mutual dependence of boom directions and MPA
- Account for fully or partially severed boom(s)

Big Picture of Improved Model

Outer Iteration

©

"Inner" Iteration

©

Inertia Tensor (1 of 2)

- \hat{b} and $C M$ must be given (and f_{b} and f_{f})
- "Build" inertia tensor of system from constituents that have known inertia tensors
- Spacecraft body
- Basic 3D solids (thin rod, sphere, cylinder)
- Parallel axis theorem translates inertia tensor to/from center of mass and arbitrary point

Inertia Tensor (2 of 2)

- Boom Direction Coordinate System (BDCS)

$$
\left[\begin{array}{ccc}
J_{\text {axial }} & 0 & 0 \\
0 & J_{\text {transverse }} & 0 \\
0 & 0 & J_{\text {transverse }}
\end{array}\right]
$$

- Change tensor orientation via similarity transformation

$$
\begin{aligned}
& A_{B D C S \leftarrow O C S}=f(\hat{b}) \\
& A=A_{B D C S \leftarrow O C S}^{T} \\
& J_{O C S}=A J_{B D C S} A^{T}
\end{aligned}
$$

- Overall process:

1. Build each boom tensor (parallel axis theorem)
2. Transform each boom tensor from $B D C S_{\text {boom }}$ to OCS
3. Build total spacecraft tensor (parallel axis theorem)

"Outer" Iteration (1 of 2)

©

"Outer" Iteration (2 of 2)

- Accelerated method converges in approximately $1 / 10$ to $1 / 3$ the number of iterations
- Based on assumption that error decreases roughly as a geometric progression ($\epsilon=a r^{n} ;|r|<1$)
- Related to Aitken's δ^{2}-process (a.k.a. Aitken extrapolation)

Big Picture of Improved Model (Review)

Outer Iteration

Results (1 of 5)

Suppose a coordinate system has its X-axis parallel to the nominal direction of the severed boom. Let φ_{1} and φ_{2} define the "tilt" of the MPA from the OCS Z-axis.

Spacecraft Tilt vs. Boom Fraction

Fuel Fraction $\mathbf{= 0 . 3 0}$

Results (2 of 5)

Change in MPA vs. Boom Fraction

Fuel Fraction $=0.30$

Results (3 of 5)

- Uncertainty in MPA is approx. $0.003^{\circ}(3 \sigma)$
- Let Φ denote the change in MPA due to break
- Uncertainty in Φ is approx. $0.006^{\circ}(3 \sigma)$
- Let X denote the break location, measured in meters from the attachment point of the boom
- Want to know uncertainty ΔX given uncertainty $\Delta \Phi$
- First order approximation:

$$
\Delta X \approx\left|\frac{d \Phi}{d X}\right|^{-1} \Delta \Phi
$$

Results (4 of 5)

Results (5 of 5)

Approximate values for 3σ uncertainty in break location for various regions of the boom.

Break Region	3σ Uncertainty
Near Boom Attachment	6 m
Near Boom Midpoint	50 cm
Near Boom Tip	$20-30 \mathrm{~cm}$

MMS Application

- Predictive products:
- Rigid body inertia tensor is used to calculate gravity gradient torque
- Definitive products:
- Extended Kalman Filter (EKF) uses inertia tensor in propagation step
- Mass properties
- CM and rigid body inertia tensor are reported for onboard use

Future Work

- Investigate whether choice of independent variable(s) $\left(\varphi_{1}, \varphi_{2}, \triangle M P A\right)$ affects accuracy of boom fraction mapping
- Implementation is already generalized for multiple breaks (f_{b} is a row vector)
- May result in ambiguous solutions
- Requires analysis
- Model boom deployment failure (requires little modification)
- Incorporate new model into inertia tensor calibration tool

Summary

- The effects of a radial boom break were shown to be observable and quantifiable
- An improved model for CM and inertia tensor was developed for the MMS mission
- Based purely on attitude observations, location of boom break can be estimated to within a small uncertainty

Questions

Backup Slide: Why MPA, $\vec{\omega}$, and \vec{L} Coincide

1. \vec{L} is fixed relative to space
2. $M P A$ is fixed relative to the body
3. $\vec{\omega}$ nutates, tracing out "body cone" and "space cone"
4. Nutation of $\vec{\omega}$ induces internal motion
5. If all motion is damped, $\vec{\omega}$ is no longer nutating (angle between vectors is zero)
