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Neutron Diffraction

Neutron diffraction provides an accurate non-destructive method of 

quantifying stresses in the volume of a part through the highly penetrating nature 

of neutrons. Specialized instruments like ORNL’s NRSF-2 or VULCAN can be 

utilized to characterize and map the stresses generated in the AM process by 

measuring the interplanar atomic spacing of a single reflection or full diffraction 

pattern. Stress can be calculated from interplanar strain.
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• Type-1 – Macro-stress over several grains

• Type-2 – Micro-stress developed within one grain

• Type-3 – Sub-micro stress over several atomic distances

Stress/Strain Estimates
• Young’s modulus, E, 111-130 GPa

• Poisson’s ratio, 𝑣, of 0.29

• d0 of 1.09152 Å

12

Strain Mapping Data Collected at HFIR’s NRSF-2 HB2B beamline

• Electrical Discharge Machining (EDM)

- Removes part from build plate

- Relieves stress at interface

- Excessive stress can result in

deformation

• Hot Isostatic Pressing (HIP)

- Parts are annealed prior to HIP

- HIP is conducted well above 

annealing temperature and high

pressure

- Reduces porosity 

- Homogenizes microstructure

- Parts are assumed to be fully

stress relieved

Sample Types

• Cubes

- 4x4x4 mm3

- 7x7x7 mm3

- 10x10x10 mm3

• Pillars

- 10x10x40 mm3

Gauge Volume: 2x2x2 mm3

Count Time: 5 min/direction

Images reproduced from: Gradl, Paul R., et al. [1] 

GRCop-84 is a precipitation strengthened alloy

composed of Cu-8 Cr-4 Nb at% with Cr2Nb precipitates

that provide dispersion and precipitation strengthening

characteristics and limited solubility in the Cu matrix. The

particle role of Cr2Nb is unusual only contributing 1/3 of

strengthening at high temperatures while the matrix

provides the remainder. The particles mechanically and

thermally stabilize the matrix retaining purity, preventing

coarsening, and loss of strength. At high temperatures

(50-85% TmCu), GRCop-84 provides the best thermal and

mechanical properties of available alloys.
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Texture Data (220) as-built GRCop-84

As-built

• Maximum strain: 0.002042

• Minimum strain: -0.0018

HIP

• Maximum strain: 0.0007

• Minimum strain: -0.0003

Motivation

Stress distribution of principle 

directions with arbitrary x and y

X
Y

Build

Effects of HIP
• High levels of strain present in as-built parts exceeding

nominal yield strength limits

• HIP envelope of strain compared to as-built is greatly

reduced

• HIP visibly introduces a reduction to the overall d-spacing
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Conclusions

EDM

Additive

Powder

Anneal

HIP

Strain maps of pillar sample indicate large compressive strain in the center
balanced by tensile strains towards the edges in the build direction, which is typical of
metal expansion and cooling. Literature values and a recently determined elastic
modulus obtained from compression tests are higher than originally anticipated, and
using this higher modulus results in pillar stresses that would substantially exceed the
yield stress. The material has not yielded despite the strain, suggesting that the
microstructure might be responsible for this behavior.

Previously, it was assumed that the HIP process effectively eliminates the
residual strain within the parts, but significant, albeit small, stresses remain.
Additionally, the HIP process appears to interfere further with the microstructure as the
d0 and even elastic modulus seem to change slightly. While the elastic modulus may
be statistical variance, the d0 has been consistently reduced between samples.

Future work includes obtaining an accurate elastic modulus for principle build
directions to further refine stress values and investigate modulus change as a function
of processing. Metallography, EBSD, SEM, are planned for samples exposed to the
beam to provide direct supplemental microstructure information.

Normalized X-ray and neutron diffraction data of 

GRCop-84 with XRD offset by for visualization

Angle 2θ (°)

N
o
rm

a
liz

e
d

 I
n
te

n
s
it
y

-0.2

0

0.2

0.4

0.6

0.8

1

15 25 35 45 55 65 75 85 95

X-ray

Neutron

GRCop-84 is currently developed for

reusable launch vehicles, including the

Space Launch System (SLS), with a focus

on fabrication via additive manufacturing

(AM) techniques. GRCop-84 is an optimal

material for consolidating with AM. The

base material is costly, the production

times are long, and geometry control can

considerably improve cooling efficiency.

Development of AM GRCop-84 with

selective laser melting (SLM) has rapidly

progressed due to ease of printing and

limited operator adjustment between

builds, but the necessary knowledge-base

of thermal history and stress state during
consolidation is still under development. During typical SLM, high thermal

energy transferred by the laser develops into thermal strain between volumes

cooling at different rates. If the stress exceeds yield, the part plastically

deforms. The success of a build is often limited by the final cooling phase of

the system after a part has been fully formed and before annealing. Residual

thermal strain after heat treatments can interfere with additional fabrication or

end properties, so a thorough understanding of the development of stress is

vital future progress of building functional hardware with GRCop-84.

Pillar Strain Maps

Scale around each map

represents full sample

volume

• Significant strain in 

build direction

• Strong compressive 

strain visible in center

• Some tensile strain at

edges

• Stress relief from

removal from build

plate is visible

Combustion chamber liner profile

Cross-section of relevant rocket hardware

Experimental set-up at NRSF-2
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