
November 2018

NASA/TM–2018-220104

Aladyn – Adaptive Neural Network Molecular
Dynamics Simulation Code: Computational
Materials Mini-Application

Vesselin I. Yamakov
National Institute of Aerospace, Hampton, Virginia

Edward H. Glaessgen
Langley Research Center, Hampton, Virginia

NASA	STI	Program	.	.	.	in	Profile	

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM–2018-220104

Aladyn – Adaptive Neural Network Molecular
Dynamics Simulation Code: Computational
Materials Mini-Application

Vesselin I. Yamakov
National Institute of Aerospace, Hampton, Virginia

Edward H. Glaessgen
Langley Research Center, Hampton, Virginia

National	Aeronautics	and	
Space	Administration	

Langley	Research	Center		
Hampton,	Virginia	23681-2199	

November 2018

4	

Acknowledgements

The development of the Aladyn mini-application software was initiated through funding
from the NASA High-Performance Computing Incubator project. V. Yamakov is
sponsored through cooperative agreement NNL09AA00A with the National Institute of
Aerospace. The authors are especially grateful to Yuri Mishin from George Mason
University for providing the mathematical algorithm implemented in the code, and for in
depth discussions throughout this project.

Available	from:	

NASA	STI	Program	/	Mail	Stop	148	
NASA	Langley	Research	Center	
Hampton,	VA		23681-2199	

Fax: 757-864-6500

5	
	

Abstract

This report provides an overview and commands description of the Computational
Materials mini-application, Aladyn. Aladyn is a simple molecular dynamics code written
in FORTRAN 2008, which is designed to demonstrate the use of adaptive neural networks
(ANNs) in atomistic simulations. The role of ANNs is to reproduce the very complex
energy landscape resulting from the atomic interactions in materials with the accuracy of
quantum mechanics-based energy calculations. The ANN is trained on a large set of atomic
structures calculated using the density functional theory (DFT) method. The Aladyn code
is being released to serve as a training testbed for students and professors in academia to
explore possible optimization algorithms for parallel computing on multicore central
processing unit (CPU) computers or computers utilizing manycore architectures based on
graphic processing units (GPUs). The effort is related to the High Performance Computing
Incubator (HPCI) project at NASA Langley Research Center.

1. Introduction

The use of Adaptive Neural Network (ANN) in atomistic simulations follows a recent
effort in materials science to employ machine-learning methods in reproducing materials
properties from physics-based first principles [1]. ANNs, when properly trained, have been
proven to successfully emulate very complex functional dependences, which are
impossible or computationally very expensive to calculate directly [2]. Atomic energies,
defined by quantum mechanics, are an example of such complex calculations. In most cases,
approximate methods based on Density Functional Theory (DFT) are used [3]. The
computational cost of DFT methods typically scale as O(N3), with N being the number of
atoms in the simulated system. Even if the most modern supercomputers are employed,
this cubic scaling makes the method applicable only to relatively very small systems of a
few hundred to a few thousand atoms. Use of heuristic machine learning methods to predict
atomic energies based on a limited knowledge of the closest atomic surrounding, rather
than the whole system, reduces the computational scaling to being proportional to N, which
allows simulations of orders of magnitude larger systems without compromising accuracy.

Classical MD methods use approximate functional forms, empirically fitted
through a set of variable parameters to emulate atomic energies as direct functions of
atomic coordinates. These empirical functions are tailored to be relatively simple to
compute, while still preserving some of the features of the quantum calculations, such as
the Embedded-Atom-Method (EAM) potential, which is based on the effective medium
theory approximation [4], or the 3-body Tersoff type potentials aimed at reproducing the
angular dependence of the covalent chemical bond [5]. Nevertheless, empirical potentials
were shown to be substantially less accurate compared to quantum calculations, and
applicable to very specific atomic configurations or predefined crystallographic phases.
Another drawback of the empirical potentials, that has become apparent recently, is their
unsuitability for massive parallelism in the latest generation of manycore computing
platforms based on Graphic-Processing-Units (GPUs). Every functional form (of EAM, or
Tersoff type, etc.) requires a different parallelization approach and has variable efficiency

6	
	

on those platforms.
Recent studies have shown that ANNs can be successfully used to predict the

complex atomic energy landscape in a given material [6,7] for simulating the atomic
motions through the method of molecular dynamics (MD) [8]. In addition, ANNs
expressed in the form of a series of matrix operations, are highly parallelizable, thus being
able to benefit fully from the latest generation of supercomputers and can potentially
become equal or better in computational speed to empirical potentials. In this way, ANNs
are proving to be a promising stepping stone between the high accuracy of first principle
quantum mechanics methods and the high computational efficiency of the classical
empirical potentials in molecular dynamics simulations.

The Aladyn software employs a trained ANN to calculate internal potential energy
of an Al crystal and to perform a simple molecular dynamics simulation to test the
efficiency and accuracy of the computation. The mini-application code presented here
simulates only constant particle, volume, and energy (NVE) ensemble on a set of
predefined single crystal structure of 500, 4000, and 16,000 atoms. The accuracy of the
energy and force calculation is monitored by following the energy conservation law in the
system (i.e., the total computed energy must be constant during the simulation). The trained
ANN is kindly given for this demonstration code by G. P. Pun and Y. Mishin from George
Mason University [9]. The Aladyn code is meant to serve as a test and training case for
students and academia for optimization on parallel multicore central processing unit (CPU)
computers or massively parallel manycore GPUs architectures. A successful optimization
of the Aladyn code will allow lessons learned to be implemented in some of the MD
simulation codes used by NASA to achieve increased computational efficiency and
enhanced capability to simulate large scale atomic structures.

2. Code Description and Algorithm

Aladyn demonstrates the use of ANNs in calculating atomic energy and forces in a
crystalline atomic structure and performing a step integration of the equations of motion of
all atoms to simulate structure evolution. In this approach, the ANN predicts the energy of
an atom based on its local environment. Interatomic forces are calculated based on the
spatial gradient of the energy and used to solve the Newtonian equations of motion to
evolve the system in a classical molecular dynamics algorithm.

The mathematical algorithm in Aladyn follows the work by Behler and Parrinello
[6]. The local environment is described through a set of Local Structure Parameters (LSPs)
[6,7] defined for each atom as functions of the relative positions of its neighbors contained
in a sphere of radius, rcut, the cut-off radius. A fast search for neighbors in the vicinity of
rcut is performed by applying the link-cell method [8] where the system box is divided into
approximately cubic shape cells of size slightly larger than rcut (Figure 1). A list of atoms
is maintained for each cell. Hence, the search for a neighbor in the interaction range of an
atom does not have to exceed the nearest neighbor link-cells (marked in gray in Figure 1).
In a 3D system, the search range includes a cube of 3" = 27 link-cells, rather than the
whole system.

7	
	

	

	

After identifying all cut-off neighbors (j) for each atom (i) in the system, the code

calculates individual LSPs for this atom. The LSPs coefficients, 𝐺'
()) , of atom (i) are

expressed [9] as a product of radial functions of the interatomic distances, 𝑟',, between
atom (i) and its neighbors (j)

𝑓./𝑟',0 =

1
2
𝑒4/5674580

9 29: , (1)

where 𝜎 and 𝑟< are model defined parameters, and Legendre polynomials of order (l),
𝑃(>)/cos𝜃',C0, of the cosine of the bond angle between atoms (i), (j), and (k)

𝑃(>D1)(𝑥) = F(2𝑙 + 1)𝑥𝑃(>) − 𝑙𝑃(>41)K (𝑙 + 1)⁄ ; 			𝑃(<)(𝑥) = 1;				𝑃(1)(𝑥) = 𝑥. (2)

The LSPs coefficients, 𝐺'
()), are supplied as an input vector to the first input layer

of the ANN. The implemented ANN is a straightforward propagating 4-layer neural
network [6] with an input layer, two hidden layers, and an output layer. The mathematical
form of the ANN is expressed through Equation (3) as

𝐸P,', = ∑ 𝑓 S∑ 𝑓 S∑ 𝐺'

())𝑤),C
(1)U(V)

)W1 + 𝑏C
(1)Y𝑤C,>

(Z)U(9)
CW1 + 𝑏>

(Z)Y + 𝑏1
(")U([)

>W1 , (3)

where 𝑁(]) are the number of elements of the s-th layer (𝑠 = 1,2,3), 𝑤P,_

(]) and 𝑏P
(]) are the

matrix and vector elements of the weights and biases of the s-th layer. The final output
layer, formally considered as the 4-th layer, gives the predicted potential energy, 𝐸P,', of
atom (i). The total system potential energy, 𝐸P , is obtained as a sum of the potential
energies of all atoms.

Figure 1. Schematic representation of the
link-cell volume decomposition. Bold lines
indicate the simulated system box
boundaries. Dotted lines indicate the link-
cell mesh with the cells in grey indicating
the nearest cells, among which a search for
neighbors of the central atom (in yellow) is
performed.

8	
	

The forces, acted on atom (i) are calculated as first derivatives of 𝐸P using the finite
differences method by virtually displacing atom (i) at a small distance, ∆𝜀, in the x-, y-, and
z- directions backward and forward around its initial (𝑥, 𝑦, 𝑧)' – position, as given by Eq.
(1) for the x-component of the force,

de
df6

= lim
∆j→<

lm(f6D∆j)4lm(f64∆j)
Z∆j

		. (4)

Once the forces are known, a high precision 5-th order predictor-corrector scheme
[10] is used to integrate the Newtonian equations of motion for each particle. The use of a
high-order predictor-corrector integrator allows for accurate monitoring of the energy of
the system [11] to identify any erroneous deviations from the energy conservation law as
the system evolves.

The block scheme of the algorithm is given in Figure 2. At the beginning of the

simulation, Aladyn reads the input structure as a list of atomic coordinates and velocities,
together with the parameters of a trained ANN. The atomic velocities define the initial
temperature of the system. Based on the input system geometry, the algorithm creates a
link-cell mesh over the whole system box. An MD step starts with identifying all neighbors
in a cut-off radius, rcut, around each atom of the system, using the link-cell list. Using the
list of neighbors, the LSPs are calculated for each atom, and supplied as an input to the
ANN for potential energy and force calculation. The calculated forces are used to integrate
the equations of motion for each atom and evolve the system by one MD step. The updated
atomic velocities, resulting from the integration, are used to calculate the kinetic energy of
each atom and the overall temperature of the system. The total system energy,

𝐸non = ∑ /𝐸P,' + 𝐸C,'0U

'W1 = 𝑐𝑜𝑛𝑠𝑡. (5)

is calculated and reported. 𝐸non is used as a verification test of the simulation since it must
remain constant during the simulation. The updated atomic positions are used to calculate
new LSPs, and the next steps repeat until the end of the simulation.

9	
	

Figure 2. Flowchart summarizing the algorithm implemented in Aladyn for performing ANN based
molecular dynamics simulation.

3. Code Execution
	
3.1. Input files

For proper execution, Aladyn needs the following input files: an input model structure file,
structure.plt, and a file defining a trained ANN, ANN.dat.

3.1.1. Input structure file: structure.plt
	

The input atomic structure is given in a text file format, named “structure.plt”, which

10	
	

lists all of the atoms in the structure with their chemical type and positions in Cartesian
coordinates. To preserve compatibility with other codes, the file format follows a
simplified version of the format, called “plt”, where some of the header information is
preserved, but not used. The first nine lines in the file form the file header describing the
dimensions of the system and the number of atoms it contains.

	
Example:

--- structure.plt ---

 -0.1008890500E+02 -0.1008890500E+02 -0.1008890500E+02 ! -h11/2 -h22/2 -h33/2 initial
 0.1008890500E+02 0.1008890500E+02 0.1008890500E+02 ! h11/2 h22/2 h33/2 initial
 -0.1008890500E+02 -0.1008890500E+02 -0.1008890500E+02 ! -h11/2 -h22/2 -h33/2 current
 0.1008890500E+02 0.1008890500E+02 0.1008890500E+02 ! h11/2 h22/2 h33/2 current
 1 500 500 500 ! N_elements N_atoms n/a n/a
 0.67248840E+01 1 1 1 ! n/a
 -1 -1 -1 ! n/a
 0 0 ! n/a
 -0.3346355136E+01 95.2 ! Pot.energy/atom, T of the system
 1 0.9950327408E+01 0.1000432080E+02 -0.9896154520E+01 1 0 ! id X Y Z chem.type constraint
 2 -0.8166704053E+01 -0.8205995631E+01 0.1005817294E+02 1 0 ! id X Y Z chem.type constraint
 .
 500 0.5821800387E+01 0.8042023494E+01 0.8000757656E+01 1 0
 1 ! a separation line between coordinates and velocities
 1 -0.1393116149E+01 -0.2181636385E+01 0.1421376560E+01 ! id Vx Vy Vz
 2 -0.1969236850E+01 0.1003207253E+01 0.2951624507E+00 ! id Vx Vy Vz
 .
 500 0.2141071866E+01 -0.5388138108E+00 0.1865096587E+01
 0 ! end of file

	
In the above example, h11, h22, and h33 are the system dimensions in the x-, y-, and

z- directions, given in (Å). The first two lines give the initial system dimensions (not used
in Aladyn), while the third and the forth lines give the current dimensions, which are used
at the start of the simulation. The fifth line describes the structure content: N_elements
gives the number of chemical elements present in the system, N_atoms gives the number
of all the atoms in the system. The last two numbers are not used in Aladyn, and are set
equal to N_atoms to preserve the compatibility with plt-file format. The next three lines
are also not used in Aladyn.

The ninth line gives the average potential energy per atom of the system, expressed
in electron-volts (eV), and the system temperature, expressed in kelvin (K). The potential
energy value is used for verification when compared with the calculated energy at the start
of the simulation. Deviations, larger than 0.1% from that value are reported as a warning
for the user to verify the implemented potential or if there were changes in the file. The
temperature value, T, given in (K), is the system temperature of the last simulation, and is
derived from the average kinetic energy of all the atoms.

The atoms are listed after the header. Each atom is described by its identification (ID)

11	
	

number, atomic position given in Cartesian (x, y, z) coordinates in Å, a number identifying
the associated chemical element, and a code number for the constraint degrees of freedom
for this atom, if any. The atomic velocities, if available from a previous MD simulation,
are listed after the atomic coordinates, separated by a line with a nonzero number (“1”),
indicating continuation of the file. The file ends with a line containing a 0 number,
indicating “end-of-file”.

3.1.2. Input potential and adaptive neural network files: pot.dat and ann.dat

The type of interacting atoms and the source for the interatomic potential are

defined in the pot.dat file. This file gives the number and type of the chemical elements in
the structure, the potential functional type number of the interatomic potential implemented,
followed by a list of files which define the interatomic potential between these elements.

Example:

An example of a pot.dat file for an aluminum system described through a straight
ANN is the following:

 --- pot.dat ---

 1 - number of chemical species in the system
 'Al' 26.982 ! element symbol and atomic mass
 100 ! straight neural network potential
 './ann.dat' ! filename containing the neural network parameters

The ann.dat file contains all of the parameters for the LSP functions, and the
weights and biases of all the layers of the trained ANN. The file was provided by Y. Mishin
at George Mason University. The file format is given in the example below.

 --- ann.dat ---

0 0.100000 6.000000 1.500000 1.000000 1
 12 2.00 2.20 2.40 2.60 2.80 3.00 3.40 3.80 4.20 4.60 5.00 5.40
 4 60 20 20 1
 4.07328794e-01 0.0000
 3.66106892e-01 0.0000
 -8.54926592e-02 0.0000
 -5.54124400e-01 0.0000

The first two lines give the parameters for the LSP function. The third line gives
the structure of the ANN, which for the provided Al potential, consists of 4 layers with 60
terms in the first layer, 20 terms in the 2-nd and 3-rd layers, and 1 term (the output energy)
in the 4-th layer. The number of ANN layers and coefficients in each layer are chosen
during the preparation of the potential through an optimization procedure for training the
ANN [9]. The rest of the ann.dat file gives the weights, 𝑤P_

(]), and biases, 𝑏P
(]), of all of the

12	
	

layers listed in the following order: 𝑤P_
(1), 𝑏P

(1), 𝑤P_
(Z), 𝑏P

(Z), 𝑤P_
("), 𝑏P

("), and 𝑤P_
(u), 𝑏P

(u), where
in this specific example, 𝑝 = (1, . . 60), 𝑞 = (1, . . 20)	 in 𝑤P_

(1) and 𝑏P
(1) ; 𝑝 = (1, . . 20),

𝑞 = (1, . . 20)	in 𝑤P_
(Z,")and 𝑏P

(Z,"); and 𝑝 = (1, . . 20), 𝑞 = 1	in 𝑤P_
(u)and 𝑏P

(u).

3.2. Output files

As a result of the simulation, Aladyn produces the following output files: (i) an output
structure file, (ii) an output data file, and (iii) a log file.

The output structure file has the same format as the input structure file structure.plt,
but its name is appended with the number of the performed MD steps as, for example
structure.00123456.plt is the name of an output structure file after 123,456 MD steps. The
output file can be directly used as an input file, after renaming to “structure.plt”, so that a
follow up simulation can be started where the first simulation has been interrupted.

The output data file has the name results.dat. This file stores measurements in columns
at each reporting step. The following system parameters are measured and stored: kinetic
and potential energy, total system energy, and temperature. The file starts with a header
which identifies the meaning of each column. An example of a results.dat file is given
below.

--- results.dat ---

 Run step Time(fs) Ek Ep Etot T(K)
 0 0.00 0.01230883 -3.34635515 -3.33404633 95.23
 1 1.00 0.01238930 -3.34642943 -3.33404013 95.85
 2 2.00 0.01246350 -3.34650749 -3.33404399 96.42
 3 3.00 0.01254594 -3.34658884 -3.33404290 97.06
 4 4.00 0.01263003 -3.34667294 -3.33404291 97.71
 5 5.00 0.01271631 -3.34675922 -3.33404291 98.38
 6 6.00 0.01280416 -3.34684707 -3.33404291 99.06
 7 7.00 0.01289296 -3.34693587 -3.33404290 99.74
 8 8.00 0.01298207 -3.34702497 -3.33404290 100.43
 9 9.00 0.01307082 -3.34711372 -3.33404290 101.12
 10 10.00 0.01315856 -3.34720146 -3.33404290 101.80

3.3. Command line options

To control the execution, Aladyn accepts the following online options as commands:

-n # – Specifies the number [# = 1,2, ..] of iterations (molecular dynamics steps - MDS)
of the system evolution. The physical simulated time of each MDS is equal to 1 fs (10-15
s).
Default value: -n 10.
Example: aladyn –n 10 ! executes 10 MDS.

13	
	

-m # – Specifies the measurement period in MDS.
Default value: -m 1.
Example: aladyn –m 5 ! measurements of the system state (energy and temperature) are
taken and reported every 5-th MDS.

-v # – Selects the version number [# = 0, 1, ..] of the code, when several versions of one or
more subroutines are implemented for comparison. What each version does has to be
specified by the programmer in the code. In the current release, version 0 (-v 0) uses non-
optimized subroutines, while in version 1 (-v 1) the subroutines energy_ANN (energy
calculation) and force_ANN (force calculation) are being optimized for multithreading,
when using OpenMP at compilation.
Default value: -v 0
Example: aladyn –v 1 ! executes version 1 of the code.

All of the command line options are optional, and if missing, the default value will be used.

4. Source Code Description

The source code of Aladyn, written in FORTRAN 2008, consists of several files. The main
program with subroutines global for the entire code are in aladyn.f. The rest of the files
contain modules as follows: aladyn_mods.f contains general purpose modules, such as:

MODULE constants – contains some constants used throughout the code;

MODULE sim_box – contains variables and subroutines defining the system box;

MODULE atoms – contains variables and subroutines related to atomic structure;

MODULE pot_module – contains variables and subroutines related to the form of the
interatomic potential, such as cut-off distance, potential file type (ANN in this case), etc.

MODULE string_mod – contains variables and subroutines related to string operations.

File aladyn_IO.f contains MODULE IO consisted of the input/output procedures and
functions.

File aladyn_MSR.f contains MODULE MEASURE consisted of the data reporting
procedures and functions.

14	
	

File aladyn_MD.f contains MODULE MD consisted of the procedures and functions
related to the MD simulation, such as the predictor-corrector integrator of the equations of
motion subroutines.

File aladyn_ANN.f contains MODULE ANN consisted of the procedures and functions
which calculate the LSPs of each atom and perform the ANN computation. This is the
module where the optimization efforts should be mainly focused. Currently, the code uses
OpenMP calls to run on multiprocessor platforms.

5. Summary

This report presents the basic algorithm and software description of the Aladyn code. The
code is part of a series of Computational Materials mini-applications developed and
released by NASA to assist the high-performance computing effort in increasing the
performance of the simulation and modeling tools in materials science. The code
demonstrates the use of adaptive neural networks in atomistic simulations. The neural
network, provided by Yuri Mishin’s group at George Mason University, is trained to
reproduce the interatomic energy of a variety of Al crystalline structures and defects. The
code is intended to be used to study the scalability and efficiency of implementing various
optimization techniques on different computing platforms, including multicore and
manycore systems in performing a basic molecular dynamics simulation on an Al crystal
as a test example. The effort is related to the High Performance Computing Incubator
(HPCI) project at NASA Langley Research Center in collaboration with George Mason
University.

	
References	
	
[1] Mueller, T., Kusne. A. G., Ramprasad, R., “Machine Learning in Materials Science:
Recent Progress and Emerging Applications”, in: Parrill, A. L., Lipkowitz, K.B. (Eds.),
Reviews in Computational Chemistry, 29, Wiley (2016) 186-273.
[2] Cheng, B. Titterington, D. M., “Neural Networks: A Review from a Statistical
Perspective”, Statistical Science 9 (1994) 2-30.
[3] Lejaeghere, K., et al., “Reproducibility in Density Functional Theory Calculations of
Solids”, Science 351 (2016) aad3000-1-7.
[4] Daw, M. S., Baskes, M. I., “Embedded-Atom Method: Derivation and Application to
Impurities, Surfaces, and Other Defects in Metals”, Phys. Rev. B 29 (1984) 6443-6453.
[5] Tersoff, J., “Empirical Interatomic Potential for Carbon, with Applications to
Amorphous Carbon” Phys. Rev. Lettrs. 61 (1988) 2879-2882.
[6] Behler, J., Parrinello, M., “Generalized Neural-Network Representation of High-
Dimensional Potential-Energy Surfaces”, Phys. Rev. Lett. 98 (2007) 146401-1-4.

15	
	

[7] Behler, J., “Perspective: Machine Learning Potentials for Atomistic Simulations”, J.
Chem. Phys. 145 (2016) 170901-1-9.
[8] Frenkel, B., Smit, B., “Understanding Molecular Simulation”, Academic Press,
London, (2001).
[9] Pun, G. P. P., Batra, R., Ramprasad, R., Mishin, Y., “Physically-Informed Artificial
Neural Networks for Atomistic Modeling of Materials”, arXiv:1808.01696v2 [cond-
mat.mtrl-sci].
[10]	Gear,	 C.	W.,	 “The	Numerical	 Integration	of	Ordinary	Differential	 Equations	of	
Various	Orders”,	Technical	Report	ANL	7126	(1966)	Argonne	National	Laboratory,	
Argonne,	IL.		
[11]	 Schlick,	 T.,	 Skeel,	 R.	 D.,	 Brunger,	 A.	 T.,	 Kale,	 L.	 V.,	 Hermans,	 J.,	 Schulten,	 K.,	
“Algorithmic	Challenges	in	Computational	Molecular	Biophysics”,	J.	Comp.	Phys.	151	
(1999)	9-48.	
	

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
(757) 864-9658

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA-TM-2018-220104

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-20954

1. REPORT DATE (DD-MM-YYYY)
1-11-2018 Technical Memorandum

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

4. TITLE AND SUBTITLE

Aladyn – Adaptive Neural Network Molecular Dynamics Simulation
Code: Computational Materials Mini-Application

6. AUTHOR(S)

PAGES

NASA

698259.02.07.07.03.01

Unclassified-
Subject Category 24
Availability: NASA STI Program (757) 864-9658

Yamakov, Vesselin I.; Glaessgen, Edward, H.

14. ABSTRACT
This report provides an overview and commands description of the Computational Materials mini-application, Aladyn. Aladyn is a simple molecular
dynamics code written in FORTRAN 2008, which is designed to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The
role of ANNs is to reproduce the very complex energy landscape resulting from the atomic interactions in materials with the accuracy of quantum
mechanics based energy calculations. The ANN is trained on a large set of atomic structures calculated using the density functional theory (DFT)
method. The Aladyn code is being released to serve as a training testbed for students and academia to explore possible optimization algorithms for
parallel computing on multicore central processing unit (CPU) computers or computers utilizing many-core architectures based on graphic processing
units (GPUs). The effort is related to the High-Performance-Computing Incubator (HPCI) project at NASA Langley Research Center.

16

15. SUBJECT TERMS

High performance computing; Atomistic simulation; Metal alloy; Molecular dynamics

