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Abstract

A summary of output measurement equations for onboard sensors used in flight testing flexible aircraft
is presented. These equations include the effects of structural flexibility and are considerably more complex
than the standard equations for rigid-body aircraft. The output equations discussed include accelerations
from linear and angular accelerometers, strains, angular rates, Euler angles, true airspeed, and air flow
angles. The output equations are derived in full form and then simplified. Linearized output equations,
suitable for state-space or transfer function models, are also developed. Example flight test data from the
X-56A subscale aeroelastic demonstrator is discussed for reference.
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Nomenclature

Roman

a acceleration vector, ft/s2

a accelerometer output vector, g
ax, ay, az accelerometer output components, g
B aircraft body reference frame
B? aircraft mass center, origin of reference frame B
b1, b2, b3 orthonormal basis vectors fixed in reference frame B
C point at which a sensor is installed in the undeformed aircraft
CD, CL stability-axis nondimensional aerodynamic force coefficients
CQk nondimensional generalized-force coefficient
CX , CY , CZ body-axis nondimensional aerodynamic force coefficients
c̄ wing mean aerodynamic chord, ft
D location of a sensor on the aircraft undergoing structural deformation
f force vector, lbf
fa aerodynamic force vector, lbf
fg gravitational force vector, lbf
fp propulsive force vector, lbf
g acceleration due to gravity, ft/s2

k vibration mode index number
M number of vibration modes
m aircraft mass, slug
mk vibration mode generalized mass, slug
N Newtonian reference frame
n1, n2, n3 orthonormal basis vectors fixed in reference frame N
O origin of reference frame N
p, q, r body-axis angular rate components, rad/s
q̄ dynamic pressure, lbf/ft2

r position vector, ft
S wing reference area, ft2

t time, s
u, v, w body-axis velocity components, ft/s
V true airspeed, ft/s
v velocity vector, ft/s
Xp, Yp, Zp body-axis propulsion forces, lbf
× cross product
x, y, z position components of mass center B?, ft
xs, ys, zs position components of installed sensor location C, ft

Greek

α angular acceleration vector, rad/s2

α angle of attack, rad
β sideslip angle, rad
∆ perturbation value
δe elevator deflection, rad
ε strain
ζk vibration mode damping ratio
η vibration mode generalized displacement
µ flank angle, rad
νkφ , νkθ , νkψ components of angular vibration mode shape at the sensor, rad
φ, θ, ψ roll, pitch, and yaw Euler angles, rad
φkx , φky , φkz components of vibration mode shape at the sensor, ft
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ψk vibration strain mode shape at the sensor
ω angular velocity vector, rad/s
ωk vibration mode natural frequency, rad/s

Subscripts

0 reference value
D sensor location

Superscripts

˙ time derivative

Acronyms

EGI embedded GPS and INS
FEM finite element model
GPS global positioning system
GVT ground vibration test
INS inertial navigation system
ITAR International Traffic in Arms Regulations
SW1B first symmetric wing bending
SW1T first symmetric wing torsion
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1 Introduction

Models describing the outputs of sensors aboard idealized rigid aircraft are well known and routinely
used in flight dynamics analyses such as simulation, control design, and system identification [1–4]. For
actual aircraft, measured data contain additional contributions from the vibration of the aircraft structure
which is not captured by the conventional models. In some cases, filters can be applied to remove unwanted
structural contributions from the data [5]. However, this may not be appropriate if the structural flexibility
significantly impacts the aircraft motion or if the vibration is of interest, as in aeroelastic analysis.

Although many sources present output measurement models for sensors considering structural deforma-
tions, for example references [6–9], a limited subset of relevant sensors are typically discussed and/or only
linearized equations are provided. For new and unique problems that arise in research, however, the more
complete output equations containing the nonlinearities inherent in the measurements are first needed before
any simplifying assumptions can be carefully considered and applied. To the authors’ knowledge, such a
presentation is not available in the current literature.

The purpose of this report is (1) to develop and compile nonlinear output measurement models of common
sensors on flexible aircraft for flight dynamics work; (2) to apply approximations to simplify those output
measurement equations for various conditions; and (3) to discuss the effects of structural flexibility on the
measurements. Section 2 presents example flight test data for the X-56A aeroelastic demonstrator where
contributions from the structural deformations were significant compared to the rigid-body contributions.
In section 3, Kane’s method is used to develop kinematic relationships for the sensed quantities. The
structural deformations are then expanded as a linear combination of orthogonal vibration modes. From
these definitions, output equations for linear and rotational accelerometers, strain gauges, rate gyros, Euler
angles, airspeed, and air flow angles are developed in section 4. Where appropriate, useful approximations
are identified and simplified models are developed. Linearized models, suitable for state-space or transfer
function, are also derived. Concluding remarks are then given in section 5.

2 Motivational Example

The X-56A Multi-Use Technology Testbed (MUTT) is a subscale aeroelastic demonstrator designed
for studying aeroelastic modeling and active flutter suppression technologies [10, 11]. Figure 1 shows a
photograph of the X-56A in flight, and figure 2 shows a three-view schematic of the aircraft. The X-56A has
a lambda-wing planform with winglets. Two engines are mounted above the aft section of the center body.
The landing gear are fixed and arranged in a tricycle configuration. There are 10 control surfaces: four along
the trailing edges of each wing and two along the trailing edges of the center body.

Measured flight test data for a subset of sensors over a portion of one maneuver are shown in figure 3.
Frequency transforms of this data are shown in figure 4 as amplitude spectra. Due to ITAR restrictions,
numerical values have been removed from these plots. The elevator deflection was defined as the average
symmetric deflection of the middle two wing flaps which were measured using potentiometers. Airspeed was
computed using data from a pitot tube mounted on an airdata boom protruding from the aircraft nose and
other measurements of the ambient atmosphere. The airdata boom also contained air flow angle vanes which
provided the angle of attack measurement. Pitch angle was measured using an embedded GPS/INS (EGI)
system located near the nominal aircraft center of mass. Pitch rate was measured using rate gyroscopes
near the aircraft nose, and these measurements were smoothly differentiated to provide pitch acceleration
measurements. The vertical accelerometer data shown was from a sensor installed in the left wing near the
leading edge. The strain data was from a bending strain gauge installed near the wing root of the right wing.

The elevator command for this maneuver included a multisine input [3] with 61 discrete frequencies to ex-
cite the short period, first symmetric wing bending (SW1B) mode, and first symmetric wing torsion (SW1T)
mode while keeping the aircraft near the straight and level reference condition. The general bandwidths for
these resonances are annotated in figure 4. Higher-frequency structural modes were also present in the data
due to the excitation onset, ambient turbulence, and dynamic coupling of the structure. Mode shapes for
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the SW1B and SW1T modes, depicted in figure 5, were computed using a finite element model (FEM) tuned
to ground vibration test (GVT) data. The mode numbers 7 and 9 used to indicate the SW1B and SW1T
modes correspond to the numbering used in the FEM.

As seen most clearly by the frequency transforms in figure 4, several measurements had content near
the structural responses that were equal to or greater in amplitude than the responses from the rigid-body
short-period mode. This characteristic is due to the structural flexibility designed into the X-56A aircraft,
and accurate modeling requires measurement models that consider the flexibility of the vehicle structure.
Throughout this report, this flight test data will be referenced to discuss specific sensor measurements.

3 Kinematic Relationships

This section defines the position, velocity, and acceleration of an arbitrary point on the aircraft needed
to develop the sensor output measurement equations in the next section. These kinematic terms are first
presented in a compact vector form. Next, the structural deformations of the aircraft are modeled using
a finite set of the orthogonal vibration modes as basis functions. Lastly, the kinematic quantities are
written in scalar forms using the developed structural deformations and conventional aircraft flight dynamics
nomenclature.

Vector Definitions

A schematic for a generic flexible aircraft is shown in figure 6. The Newtonian (inertial) reference frame
is denoted N . The orthonormal vectors n1, n2, and n3 are fixed in N and originate at point O. The notation
used for this figure and in this section follows from reference [12], which is widely regarded for its simple
and efficient representation. For example, kinematic quantities are developed without specialization to a
particular reference frame, which increases the generality of the expressions and reduces complexity of the
notation.

The aircraft body is denoted B and has its instantaneous mass center at point B? with position rOB? . The
mass center is not fixed to a physical point in the aircraft, but instead moves according to the distribution of
mass, for example due to fuel burn. Three orthonormal vectors, b1, b2, and b3, originate at B? and denote
the aircraft body mean axes, which are formally defined such that the translational and angular momenta
from unforced elastic deformation are zero [6]. Less rigorously, the mean axes can be thought of as the body
axes of the aircraft in its undeformed jig shape, about which the structure vibrates. For truly rigid aircraft,
the mean axes are identical to the body axes, where b1 points out the nose (x direction), b2 points out
the right wing (y direction), and b3 points out the bottom of the aircraft (z direction). Frame B also has
angular velocity ω in N and angular acceleration α in N . The mass center B? has velocity NvB? in N and
acceleration NaB

?

in N .

A given sensor is initially located at point C, which is fixed in B at rB
?C . When the aircraft experiences

structural deformation, the sensor location moves from C to point D along rCD in B. The inertial position
of the sensor when the aircraft has deformed is the sum of the position vectors

rOD = rOB? + rB
?C + rCD (1)
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The inertial velocity at the sensor results from differentiating equation (1) in N with respect to time, as

NvD =
Nd

dt
(rOD)

=
Nd

dt
(rOB?) +

Nd

dt
(rB

?C + rCD)

=
Nd

dt
(rOB?) + ω×(rB

?C + rCD) +
Bd

dt
(rB

?C + rCD)

= NvB? + ω×(rB
?C + rCD) + BvD (2)

where the superscript preceding the derivative symbol indicates the frame in which the derivative is taken.
In developing equation (2), the theorem for differentiation in moving reference frames [12] was used, e.g.,

Nd

dt
(rB

?C) =
Bd

dt
(rB

?C) + ω×rB
?C (3)

The identity
Bd

dt
(rB

?C) = 0 (4)

was also used, which results from the initial sensor location being fixed in the body frame. The first term
on the right side of equation (2) is the velocity of the aircraft mass center, the second term is the tangential
velocity due to rotation of the aircraft and offset of the sensor location from the mass center, and the third
term is the local velocity of the sensor due to structural deformation.

The acceleration at the sensor is obtained by differentiating equation (2) in N with respect to time,

NaD =
Nd

dt
(NvD)

=
Nd

dt
(NvB?) +

Nd

dt
(ω×(rB

?C + rCD)) +
Nd

dt
(BvD)

= NaB
?

+ 2ω×BvD +α×(rB
?C + rCD) + ω×[ω×(rB

?C + rCD)] + BaD (5)

Similar identities as in the development of equation (2) were applied, as well as the identity

α =
Bdω

dt
=

Ndω

dt
(6)

which results from equation (3) because ω × ω = 0. The first term on the right side of equation (5) is the
acceleration of the aircraft mass center. The following three terms are the Coriolis, tangential, and centripetal
accelerations, respectively. The last term is the local acceleration due to the structural deformation.

Equations (1), (2), and (5) constitute the inertial position, velocity, and acceleration of a sensor located
at an arbitrary point D on a flexible aircraft undergoing structural deformation. The assumed deformations,
so far in this discussion, can be arbitrarily large. Next, the structural deformations describing the motion of
D relative to C will be parameterized using normal modes as basis functions, which restricts the analysis to
small, elastic deformations.
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Structural Deformation Model

When undergoing small elastic deformations in a vacuum, the vibrational modes of a structure each can
be modeled as the second-order dynamic system

η̈i + 2ζiωiη̇i + ω2
i ∆ηi =

q̄Sc̄

mi
CQi (7)

about the reference condition. The modal state ηi represents the generalized displacement of the ith vibration
mode of the aircraft structure. The parameters mi, ωi, and ζi are the generalized mass, frequency, and
damping ratio of the vibration mode. The term CQi is the nondimensional generalized-force coefficient.
Although in theory an infinite number of vibration modes exist, the modes considered are truncated to a
finite set according to the intention for modeling the system and/or information content in available data.
Unless otherwise indicated, the word “modal” in this report pertains to the vibration modes and not to
generalized modal displacements of the short period mode, for example.

The deformation of aircraft structure, displacing the sensor from C to D, is expanded using the mode
shapes of the M retained vibration modes as [6]

rCD =

M∑
k=1

(
φkxηkb1 + φkyηkb2 + φkzηkb3

)
(8)

The terms φkx , φky , and φkz are the displacement components of the kth mode shape along the body mean
axes due to a unit displacement of ηk, as shown in figure 5 for example. The corresponding local velocities
and accelerations due to the structural deformation are

BvD =
Bd

dt
(rCD) =

M∑
k=1

(
φkx η̇kb1 + φky η̇kb2 + φkz η̇kb3

)
(9)

BaD =
Bd

dt
(BvD) =

M∑
k=1

(
φkx η̈kb1 + φky η̈kb2 + φkz η̈kb3

)
(10)

In the remaining text, Einstein notation is used when referring to the structural deformation. Terms
having subscripts k are to be evaluated and summed from k = 1 to k = M , as in equations (8)–(10). For
example, the last term in equation (10) is the acceleration component along the vertical body axis b3 due
to structural deformation, and is written in this notation as

M∑
k=1

φkz η̈k = φ1z η̈1 + φ2z η̈2 + . . .+ φMz η̈M
∆
= φkz η̈k (11)

This functional notation is introduced to simplify the expressions involving summations in the output mea-
surement equations, and is similar to the shorthand typically used in flight dynamics literature to account
for the effects of multiple control surface deflections [4].

A few points about the structural deformation model warrant further elaboration. First, note that the
vibration modes describe the structural deformations when there is no air present, as in a vacuum. These
vibratory modes are dependent upon the aircraft configuration, geometry, material properties, and mass
properties. Analysis using a FEM and GVT data can determine the generalized masses, frequencies, and
damping ratios of the vibration modes used in equation (7), as well the mode shapes for a sensor placed
at an arbitrary location. These parameters may need to be scheduled using other parameters, such as fuel
weight.

Second, it may seem inconsistent to use the vibration mode shapes, which are developed for when air
is not present, to describe the aircraft motion when air is present. In flight, the frequencies and damping
ratios of the aeroelastic vibrations change as a function of flight condition and dynamic pressure. However,
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because the modal states pertain to these in-vacuo modes, this parameterization is a consistent and valid
choice for parameterizing the deformation of the structure at any point on the aircraft, in space and time.
Moreover, other basis functions could be used to describe the deformation, but the in-vacuo modes have
physical significance for small displacements and can be measured and modeled using traditional methods.

Next, the structural deformations considered here are parameterized for small displacements, which
can be approximated well by linear dynamic systems, as in equation (7). Analysis of these systems using
eigenvalues and eigenvectors admits vibration modes which are mutually orthogonal with respect to the
generalized mass matrix of the vibration modes [6]. Because the displacements are small, it is assumed that
the aircraft mass properties, such as center of mass location or the inertia components, are not significantly
affected. These assumptions are generally valid for conventional aircraft and normal flight conditions. For
aircraft incurring large and nonlinear deformations, such as HALE-type aircraft [13, 14], more complex
structural deformation models may be required. The equations presented in this report are still valid in this
case, but the parameterization for the structural deformation rCD would need to be revised.

Lastly, consider the relative magnitudes of the modal displacements, rates, and accelerations. The steady-
state response of the ith mode to a sinusoidal input at its natural frequency is

ηi = ai sin (ωit+ φi) (12a)

The modal rate and acceleration are then

η̇i = ai ωi cos (ωit+ φi) (12b)

η̈i = −ai ω2
i sin (ωit+ φi) (12c)

The relative amplitudes of the modal displacement, rates, and acceleration are therefore 1, ωi, and ω2
i . Varia-

tions of these relative amplitudes with frequency are shown in figure 7. For natural frequencies greater than 1
rad/s (or about 0.16 Hz), which is usually the case with aircraft vibration modes, the modal displacements,
rates, and accelerations can be orders of magnitude different. This observation will be used later in this
report as justification for neglecting lower derivatives of η to simplify the output measurement equations.

Conventional Forms

The vector definitions and structural deformation model developed are now written using conventional
aircraft nomenclature [3, 4] and scalar equations. The aircraft inertial attitude is parameterized using the
conventional yaw-pitch-roll sequence of Euler angles used in flight dynamics [4], in which rotation from an
inertial frame to the body frame undergoes first a yaw rotation through ψ, then a pitch rotation through θ,
and finally a roll rotation through φ. The angular velocity and angular acceleration of the mean axes are

ω = pb1 + q b2 + r b3 (13)

α = ṗb1 + q̇ b2 + ṙ b3 (14)

The aircraft mass center B? has inertial position, velocity, and acceleration

rOB? = xn1 + y n2 + z n3 (15)

NvB? = ub1 + v b2 + w b3 (16)

NaB
?

= (u̇+ qw − rv)b1 + (v̇ + ru− pw)b2 + (ẇ + pv − qu)b3 (17)

Instead of using the mean-axis velocity components u, v, and w, the velocity of the aircraft mass center
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could be parameterized using the stability axes or wind axes, as illustrated in figure 8, where

V =
√
u2 + v2 + w2 (18)

α = arctan
(w
u

)
(19)

β = arcsin
( v
V

)
(20)

µ = arctan
( v
u

)
(21)

are the true airspeed, angle of attack, angle of sideslip, and flank angle at the mass center.

The installed sensor location at point C has position fixed in the mean axes

rB
?C = xs b1 + ys b2 + zs b3 (22)

The sensor location, when deformed from C to D, has the inertial position and velocity

rOD = xD n1 + yD n2 + zD n3 (23)

NvD = uD b1 + vD b2 + wD b3 (24)

Substituting the developed scalar quantities into equation (1), expanding the equations, and writing the
terms in the inertial frame, the position of the sensor at D is

xD = x+ (cos θ cosψ) (xs + φkxηk) + (sinφ sin θ cosψ − cosφ sinψ)
(
ys + φkyηk

)
+ (cosφ sin θ cosψ + sinφ sinψ) (zs + φkzηk) (25a)

yD = y + (cos θ sinψ) (xs + φkxηk) + (sinφ sin θ sinψ + cosφ cosψ)
(
ys + φkyηk

)
+ (cosφ sin θ sinψ − sinφ cosψ) (zs + φkzηk) (25b)

zD = z − (sin θ) (xs + φkxηk) + (sinφ cos θ)
(
ys + φkyηk

)
+ (cosφ cos θ) (zs + φkzηk) (25c)

Similarly, substituting the developed scalar quantities into equation (2) and writing in terms of the body
frame yields the velocity components at point D as

uD = u− r(ys + φkyηk) + q(zs + φkzηk) + φkx η̇k (26a)

vD = v + r(xs + φkxηk)− p(zs + φkzηk) + φky η̇k (26b)

wD = w − q(xs + φkxηk) + p(ys + φkyηk) + φkz η̇k (26c)
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4 Output Measurement Equations

This section discusses the output measurement equations for sensors commonly installed on a flexible
aircraft. Equations are first presented in full form, and then simplifications are applied to reduce and
linearize the equations, where appropriate. The emphasis is on the contributions of the aircraft flexibility
to the measurements, so other important effects such as measurement noise, bias and scale factor errors,
transducer dynamics, time delays, cross-talk, misalignment, etc., are not mentioned but are discussed in
other works, such as references [1–3, 15, 16]. For illustrative purposes, the X-56A flight test data shown in
figures 3–4 are again referenced.

Each sensor is assumed to be installed at point C and located at point D when undergoing structural
deformation. The mode shapes φkx , φky , and φkz and the installed position of the sensor xs, ys, and zs
correspond to the sensor in question. When performing flight dynamics work that involves multiple sensors,
additional notation is required to distinguish between different sensors.

Linear Accelerometers

One of the most important sensors for observing aeroelastic effects on a flexible aircraft is a linear
accelerometer, due in part to the high bandwidth and sensitivity of the sensor. Linear accelerometers
measure the translational acceleration due to applied forces, excluding gravity [3, 16]. A derivation of the
accelerometer outputs using vector notation is provided in appendix A, where two different but equivalent
forms for the outputs are developed. These forms, expanded as scalar equations, are discussed sequentially
in this section.

A sensor containing a collocated triad of accelerometers at point D has the output

aD = axDb1 + ayDb2 + azDb3 (27)

where axD , ayD , and azD are the components in the body axes. Note a is the accelerometer output whereas
a is the kinematic acceleration. Some accelerometers give only one component of this measurement rather
than all three components.

The first form for the accelerometer outputs is written in terms of the specific applied forces, as follows
from substituting equation (A-7a) into equation (A-8). Expanding this vector equation using scalar notation,
the outputs are

g axD =
q̄SCX +Xp

m
−
(
q2 + r2

)
(xs + φkxηk) + (pq − ṙ)

(
ys + φkyηk

)
+ (pr + q̇) (zs + φkzηk) + 2

(
φkzq − φkyr

)
η̇k + φkx η̈k (28a)

g ayD =
q̄SCY + Yp

m
+ (pq + ṙ) (xs + φkxηk)−

(
p2 + r2

) (
ys + φkyηk

)
+ (qr − ṗ) (zs + φkzηk) + 2 (φkxr − φkzp) η̇k + φky η̈k (28b)

g azD =
q̄SCZ + Zp

m
+ (pr − q̇) (xs + φkxηk) + (qr + ṗ)

(
ys + φkyηk

)
−
(
p2 + q2

)
(zs + φkzηk) + 2

(
φkyp− φkxq

)
η̇k + φkz η̈k (28c)

The accelerometer outputs axD , ayD , and azD are typically given in g units; however, the g factor has
been moved to the left side of the equations in this report, for convenience. The terms CX , CY , and CZ

are the nondimensional aerodynamic force coefficients along the body axes, and Xp, Yp, and Zp are the
propulsive forces. The aerodynamic forces could instead be written in the stability axes using CD and CL

11



by substituting

CX = −CD cosα+ CL sinα (29a)

CZ = −CD sinα− CL cosα (29b)

in equations (28a)–(28c).

To simplify these accelerometer outputs, the contributions from η and η̇ can often be neglected for
vibration modes with natural frequencies above 1 rad/s, as discussed in section 3. In addition, the propulsive
thrust vector is often aligned with b1 so that Yp = Zp = 0. These simplifications reduce the accelerometer
outputs to

g axD =
q̄SCX +Xp

m
−
(
q2 + r2

)
xs + (pq − ṙ) ys + (pr + q̇) zs + φkx η̈k (30a)

g ayD =
q̄SCY

m
+ (pq + ṙ)xs −

(
p2 + r2

)
ys + (qr − ṗ) zs + φky η̈k (30b)

g azD =
q̄SCZ

m
+ (pr − q̇)xs + (qr + ṗ) ys −

(
p2 + q2

)
zs + φkz η̈k (30c)

These equations are the same for accelerometer outputs on a rigid aircraft [1, 3], except for the additional
modal acceleration terms at the end of these equations.

Another way to simplify these equations is to linearize them about a reference flight condition. Using
the procedure described in reference [17], the linearized versions of equations (28a)–(28c) are

g∆axD =
q̄0S

m0
∆CX +

2q̄0S CX0

m0V0
∆V +

∆Xp

m0

+ (zs + φkzηk0) ∆q̇ −
(
ys + φkyηk0

)
∆ṙ + φkx∆η̈k (31a)

g∆ayD =
q̄0S

m0
∆CY +

2q̄0S CY0

m0V0
∆V +

∆Yp
m0

− (zs + φkzηk0) ∆ṗ+ (xs + φkxηk0) ∆ṙ + φky∆η̈k (31b)

g∆azD =
q̄0S

m0
∆CZ +

2q̄0S CZ0

m0V0
∆V +

∆Zp

m0

+
(
ys + φkyηk0

)
∆ṗ− (xs + φkxηk0

) ∆q̇ + φkz∆η̈k (31c)

where the 0 subscript indicates a reference value about which the linearization is performed, and where the
∆ symbol denotes a perturbation value, e.g.,

CZ = CZ0
+ ∆CZ (32)

The ∆V terms in equations (31a)–(31c) arise from variations in dynamic pressure and, along with pertur-
bations in the propulsive forces, can often be neglected in many maneuvers. The aircraft mass and wing
reference area were assumed to be constant in these linearizations. If the stability-axis force coefficients are
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used instead of the body-axis coefficients, the linearized equations are

g∆axD =
q̄0S

m0
(−∆CD cosα0 + ∆CL sinα0) +

2q̄0S

m0V0
(−CD0 cosα0 + CL0 sinα0) ∆V

q̄0S

m0
(CD0

sinα0 + CL0
cosα0) ∆α+

∆Xp

m0

+ (zs + φkzηk0
) ∆q̇ −

(
ys + φkyηk0

)
∆ṙ + φkx∆η̈k (33a)

g∆ayD =
q̄0S

m0
∆CY +

2q̄0S CY0

m0V0
∆V +

∆Yp
m0

− (zs + φkzηk0
) ∆ṗ+ (xs + φkxηk0

) ∆ṙ + φky∆η̈k (33b)

g∆azD =
q̄0S

m0
(−∆CD sinα0 −∆CL cosα0) +

2q̄0S

m0V0
(−CD0

sinα0 − CL0
cosα0) ∆V

+
q̄0S

m0
(−CD0

cosα0 + CL0
sinα0) ∆α+

∆Zp

m0

+
(
ys + φkyηk0

)
∆ṗ− (xs + φkxηk0) ∆q̇ + φkz∆η̈k (33c)

in which both CD and CL affect ∆axD and ∆azD . The additional ∆α terms are due to the rotation from
body frame to stability frame. The equation for the lateral accelerometer output is unchanged from before.

Equations (31a)–(33c) are linear in the states and controls of the aircraft, and can be assembled into
transfer function models or into the output equations for state-space models. In many cases the static
deformation of the structure ηk0 can be neglected. However, in some conditions, such as during high wing
loads or in high-g turns, the effects of the static deformations may be significant.

The second form for the accelerometer output is written in terms of the aircraft states and their deriva-
tives, which follows from substituting equation (A-7b) into equation (A-8). Expanding this vector equation
using scalar notation, the outputs are

g axD = u̇+ q (w + 2φkz η̇k)− r
(
v + 2φky η̇k

)
+ g sin θ

−
(
q2 + r2

)
(xs + φkxηk) + (pq − ṙ)

(
ys + φkyηk

)
+ (pr + q̇) (zs + φkzηk) + φkx η̈k (34a)

g ayD = v̇ + r (u+ 2φkx η̇k)− p (w + 2φkz η̇k)− g sinφ cos θ

+ (pq + ṙ) (xs + φkxηk)−
(
p2 + r2

) (
ys + φkyηk

)
+ (qr − ṗ) (zs + φkzηk) + φky η̈k (34b)

g azD = ẇ + p
(
v + 2φky η̇k

)
− q (u+ 2φkx η̇k)− g cosφ cos θ

+ (pr − q̇) (xs + φkxηk) + (qr + ṗ)
(
ys + φkyηk

)
−
(
p2 + q2

)
(zs + φkzηk) + φkz η̈k (34c)

13



To simplify these accelerometer outputs, η and η̇ could be neglected, as before, resulting in

g axD = u̇+ qw − rv + g sin θ

−
(
q2 + r2

)
xs + (pq − ṙ) ys + (pr + q̇) zs + φkx η̈k (35a)

g ayD = v̇ + ru− pw − g sinφ cos θ

+ (pq + ṙ)xs −
(
p2 + r2

)
ys + (qr − ṗ) zs + φky η̈k (35b)

g azD = ẇ + pv − qu− g cosφ cos θ

+ (pr − q̇)xs + (qr + ṗ) ys −
(
p2 + q2

)
zs + φkz η̈k (35c)

which, again, are the standard output equations for rigid aircraft but with additional contributions due to
the modal accelerations. Linearizing equations (34a)–(34c) about a reference condition using velocities in
the body axes yields

g∆axD = ∆u̇+ w0∆q − v0∆r + (g cos θ) ∆θ

+ (zs + φkzηk0
) ∆q̇ −

(
ys + φkyηk0

)
∆ṙ + φkx∆η̈k (36a)

g∆ayD = ∆v̇ − w0∆p+ u0∆r − (g cosφ0 cos θ0) ∆φ+ (g sinφ0 sin θ0) ∆θ

− (zs + φkzηk0
) ∆ṗ+ (xs + φkxηk0

) ∆ṙ + φky∆η̈k (36b)

g∆azD = ∆ẇ + v0∆p− u0∆q + (g sinφ0 cos θ0) ∆φ+ (g cosφ0 sin θ0) ∆θ

+
(
ys + φkyηk0

)
∆ṗ− (xs − φkxηk0) ∆q̇ + φkz∆η̈k (36c)

or, if the stability axes are used, yields

g∆axD = (cosα0 cosβ0) ∆V̇ + (−V0 cosα0 cosβ0) ∆β̇ + (−V0 sinα0 cosβ0) ∆α̇

+ (V0 sinα0 cosβ0) ∆q + (−V0 sinβ0) ∆r + (g cos θ) ∆θ

+ (zs + φkzηk0
) ∆q̇ −

(
ys + φkyηk0

)
∆ṙ + φkx∆η̈k (37a)

g∆ayD = (sinβ0) ∆V̇ + (V0 cosβ0) ∆β̇ + (−V0 sinα0 cosβ0) ∆p

+ (V0 cosα0 cosβ0) ∆r + (−g cosφ0 cos θ0) ∆φ+ (g sinφ0 sin θ0) ∆θ

− (zs + φkzηk0
) ∆ṗ+ (xs + φkxηk0

) ∆ṙ + φky∆η̈k (37b)

g∆azD = (sinα0 cosβ0) ∆V̇ + (−V0 sinα0 sinβ0) ∆β̇ + (V0 cosα0 cosβ0) ∆α̇

+ (g sinφ0 cos θ0) ∆φ+ (g cosφ0 sin θ0) ∆θ

+
(
ys + φkyηk0

)
∆ṗ− (xs − φkxηk0) ∆q̇ + φkz∆η̈k (37c)

The X-56A flight test data for az shown in figures 3–4 is from a vertical accelerometer placed on the left
wing, near the leading edge of the wingtip. As with all sensors, the installation location determines which
modes are observable in the measurements. For example, an accelerometer placed at a node of a particular
vibration mode will not have any contributions to the output from that mode. Frequency content from the
short period mode is present because of the contribution from ∆q̇ and because that mode depends on lift
generation through CZ or CL. Content from the SW1B mode is present because the accelerometer is placed
near the wingtip, where φ7z is large. Lastly, content from the SW1T mode is present because the sensor is
located forward of the elastic axis of the wing and φ9z is large. Figure 5 gives an idea of the relative size of
φkz for the SW1B and SW1T modes.
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Strain Gauges

Another important sensor for flexible aircraft dynamics is the strain gauge, which measures normalized
deformations of the local structure. The measurements are sensitive to a particular axis or type of strain
depending on the sensor type, configuration, and orientation. Fiber-optic strain sensors, which can provide
many strain measurements along the distributed sensing aperture, are also becoming common in flight tests
[18]. Similar to accelerometers, strain sensors have wide bandwidth and give useful information on the
vibration modes. In contrast to accelerometers, this information is on the generalized modal displacements
rather than the modal accelerations. Strain outputs are relatively simple in that only the modal displacements
contribute to the output, whereas accelerometers have contributions from many sources.

The strains measured are typically small and within the range of elastic deformation. As such, the
measurement equations for strain sensors are typically written as

εD = ψkηk (38)

which is already in a linear form. The strain modes ψk are the strains registered by the sensor due to a
unit displacement in ηk, and can be obtained from a FEM or GVT data, such as in figure 5. If temperature
compensation is not implemented in the hardware, additional terms are needed for this calibration.

The strain gauge data shown in figures 3–4 was measured with a bending strain gauge attached near the
root of the right wing. Content from the short period and SW1B modes are present in the data. The SW1T
mode is also present, but to a lesser extent because that mode only contains a small amount of wing bending
at the wing root, resulting in a low value of ψ9.

Rate Gyroscopes

Rate gyroscopes measure the angular rate components of the aircraft. The output equations consist of
the mean-axes angular rate and the local angular rate due to angular deformation of the aircraft structure.
The gyroscope output equations are

pD = p+ νkφ η̇k (39a)

qD = q + νkθ η̇k (39b)

rD = r + νkψ η̇k (39c)

where νkφ , νkθ , and νkψ are the angular displacements from C to D incurred by a unit displacement of ηk.
These terms, sometimes called the modal slopes, can be obtained by computing local derivatives of the mode
shapes with respect to the spatial dimensions, such as from figure 5. The angular rate output equations are
already in linear form and can be directly assembled into a state-space or transfer function model.

For the sample flight test data in figures 3–4, the pitch rate data was from a gyroscope installed near
the nose along the centerline. The short period and SW1B modes were present in this measurement, with
negligible amplitudes from the SW1T mode. This was because the gyroscopes were installed near the aircraft
nose where, as illustrated in figure 5, there is bending from the SW1B mode but little torsion from the SW1T
mode, resulting in a large ν7θ and small ν9θ .
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Angular Accelerometers

Angular accelerometers are seldom used in flight testing; rather, this information is more often obtained
from numerical differentiation of measured angular rate data [3]. Regardless, the corresponding output
equations for this data are

ṗD = ṗ+ νkφ η̈k (40a)

q̇D = q̇ + νkθ η̈k (40b)

ṙD = ṙ + νkψ η̈k (40c)

which is a combination of the mean-axis angular accelerations and the local angular accelerations of the
aircraft structure. These equations come from differentiating equations (39a)–(39c) with respect to time,
and are already in a linear form.

The pitch acceleration data shown in figures 3–4 was obtained by differentiating measured pitch rate data
in the frequency domain. Due to this dependence, the angular acceleration data exhibited the same modal
components as the angular rate data previously mentioned. Specifically, there were significant content from
the short period and SW1B modes, but little content from the SW1T mode.

Euler Angles

The Euler angles describing the aircraft attitude are estimated from sensor data, and are usually the
output of an inertial measurement unit or inertial navigation system onboard the aircraft. For traditional
rigid aircraft, the attitude estimate is essentially the solution to the differential equations

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (41a)

θ̇ = q cosφ− r sinφ (41b)

ψ̇ = q sinφ sec θ + r cosφ sec θ (41c)

using measured angular rate data. In addition, data from magnetometers, accelerometers, airdata probes,
and other sensors can be combined in an extended Kalman filter to improve the attitude estimate.

If this type of attitude estimation is used for flexible aircraft, a closed-form solution to the estimated
Euler angle outputs is not possible. If vibration mode states can be estimated and their effects removed from
the sensor data [19], traditional attitude estimation techniques can still be applied. Otherwise, the flexibility
effects become confounded in the estimated attitude output as a function of which sensor data is included in
the estimation, the local mode shapes for each of the sensors, the measurement and process noise covariance
matrices selected, filters internal to the sensor package, and other factors.

If the relevant sensors are installed close enough together on the aircraft that they may be assumed to
be collocated at a single point, equations (41a)–(41c) are approximately

φ̇D = (p+ νkφ η̇k) + (q + νkθ η̇k) sinφD tan θD + (r + νkψ η̇k) cosφD tan θD (42a)

θ̇D = (q + νkθ η̇k) cosφD − (r + νkψ η̇k) sinφD (42b)

ψ̇D = (q + νkθ η̇k) sinφD sec θD + (r + νkψ η̇k) cosφD sec θD (42c)
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Linearizing this differential equation about a reference condition results in

∆φ̇D = ∆p+ (sinφD0 tan θD0) ∆q + (cosφD0 tan θD0) ∆r

+
(
νkφ + νkθ sinφD0 tan θD0 + νkψ cosφD0 tan θD0

)
∆η̇k (43a)

∆θ̇D = (cos θD0
) ∆q − (sinφD0

) ∆r +
(
νkθ cos θD0

− νkψ sinφD0

)
∆η̇k (43b)

∆ψ̇D = (sinφD0
sec θD0

) ∆q + (cosφD0
sec θD0

) ∆r

+
(
νkθ sinφD0

sec θD0
+ νkψ cosφD0

sec θD0

)
∆η̇k (43c)

For small φD0 and θD0 , such as in steady wings-level flight, these equations may be approximated as

∆φ̇D = ∆p+ νkφ∆η̇k (44a)

∆θ̇D = ∆q + νkθ∆η̇k (44b)

∆ψ̇D = ∆r + νkψ∆η̇k (44c)

which have the solutions

∆φD = ∆φ+ νkφ∆ηk (45a)

∆θD = ∆θ + νkθ∆ηk (45b)

∆ψD = ∆ψ + νkψ∆ηk (45c)

Adding these perturbation solutions to the initial conditions, the approximate outputs of the attitude solution
using Euler angles is

φD = φ+ νkφηk (46a)

θD = θ + νkθηk (46b)

ψD = ψ + νkψηk (46c)

Equations (44a)–(44c) are similar to the differential equations typically used in linearized models of rigid-
body flight dynamics [3, 4], except these equations include additional terms due to the modal rates. The
solutions to these equations, given as equations (45a)–(45c), show that the Euler angle outputs are primarily
a combination of the body mean-axis Euler angles and the local rotational deformations of the aircraft
structure.

In the flight test data shown in figures 3–4, the pitch angle data was taken from an inertial navigation
system located near the aircraft mass center. The largest amplitudes are due to the short period response
of the airplane. The SW1B mode, and to a much lesser extent also the SW1T mode, were also present in
the measurement, similar to the angular rate data. Differentiated Euler angle data matched the measured
gyroscope data well over the bandwidth of the short period mode. However, the content near the SW1B and
SW1T modes did not match because the values of ν7θ and ν9θ were different for the two sensor locations.
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Airspeed

True airspeed is often computed from dynamic pressure measurements and other data for subsonic flight.
The (squared, for convenience) airspeed measurement can be written in terms of the velocities at D from
equations (26a)–(26c) as

V 2
D = u2

D + v2
D + w2

D

=
[
u− r(ys + φkyηk) + q(zs + φkzηk) + φkx η̇k

]2
+
[
v + r(xs + φkxηk)− p(zs + φkzηk) + φky η̇k

]2
+
[
w − q(xs + φkxηk) + p(ys + φkyηk) + φkz η̇k

]2
(47)

These equations, as well as those developed next for angle of attack and sideslip or flank angle, account only
for the inertial velocity of the aircraft and do not consider effects of a moving atmosphere or how the flow
immediately surrounding the aircraft is disturbed relative to the freestream.

In many cases, this equation can be simplified by neglecting η, which should be much smaller than η̇.
Further simplification can occur when airdata booms extend from the nose or wing tips, in which ys and/or
zs are small. For full-scale aircraft, contributions from the angular rates may be negligible. The modal rates
η̇ may also have little effect on the output measurement.

Linearizing the airspeed measurement about a reference condition using the mean axes results in

∆VD =

[
u0√

u2
0 + v2

0 + w2
0

]
∆u+

[
v0√

u2
0 + v2

0 + w2
0

]
∆v +

[
w0√

u2
0 + v2

0 + w2
0

]
∆w

+

[
w0(ys + φykηk0

)− v0(zs + φzkηk0
)√

u2
0 + v2

0 + w2
0

]
∆p

+

[
u0(zs + φzkηk0

)− w0(xs + φxkηk0
)√

u2
0 + v2

0 + w2
0

]
∆q

+

[
v0(xs + φxkηk0)− u0(ys + φykηk0)√

u2
0 + v2

0 + w2
0

]
∆r +

[
u0φkx + v0φky + w0φkz√

u2
0 + v2

0 + w2
0

]
∆η̇k (48)

or, using the stability axes,

∆VD = ∆V +
[
sinα0 cosβ0(ys + φkyηk0)− sinβ0(zs + φkzηk0)

]
∆p

+ [cosα0 cosβ0(zs + φkzηk0)− sinα0 cosβ0(xs + φkxηk0)] ∆q

+
[
sinβ0(xs + φkxηk0

)− cosα0 cosβ0(ys + φkyηk0
)
]

∆r

+
[
φkx cosα0 cosβ0 + φky sinβ0 + φkz sinα0 cosβ0

]
∆η̇k (49)

The dominant term in these linearized forms is the forward speed or true airspeed, with smaller contributions
from the angular rates and the modal rates. In general, the linearization for airspeed, and also for angle of
attack and sideslip or flank angle, has a larger range of validity when using stability-axis velocities because
the outputs involve a lesser degree of nonlinearity than when body-axis velocities are used.

The airdata measurements shown in figures 3–4 used a NACA probe protruding from the aircraft nose.
The measurements had only low-frequency content, near the phugoid mode and short period mode, and were
not significantly affected by structural deformations during this maneuver. Quantities with relatively low-
frequency content, such as airspeed and dynamic pressure, are less sensitive to structural vibrations of the
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aircraft, which generally occur at higher frequencies. Although the FEM developed for the X-56A includes
vibration modes for the nose boom, these modes occur at frequencies higher than those excited during this
maneuver.

Angle of Attack

Air flow angle vanes are often used to measure angle of attack and flank angle. The angle-of-attack
output measurement for a sensor at D is

αD = arctan

(
wD

uD

)

= arctan

(
w − q(xs + φkxηk) + p(ys + φkyηk) + φkz η̇k

u− r(ys + φkyηk) + q(zs + φkzηk) + φkx η̇k

)
(50)

from substitution of equations (26a)–(26c).

This equation can be simplified by assuming that η is much smaller than η̇ and therefore can be ignored.
If, in addition, low angles of attack, low angular rates, and high speeds can be assumed, the output equation
reduces to

αD = α+
p ys − q xs + φkz η̇k

V
(51)

which shows the most important contributions to the measurement, besides the angle of attack, are from
the angular rates and the modal rates. This equation is similar to the conventional position-offset correction
applied to angle of attack measurements [1,3,20] to transfer the angle of attack measurement to the aircraft
mass center, but includes the modal rate. The linearized versions of equation (50) are

∆αD =

[
−w0

u2
0 + w2

0

]
∆u+

[
u0

u2
0 + w2

0

]
∆w +

[
u0(ys + φkyηk0

)

u2
0 + w2

0

]
∆p

+

[
−u0(xs + φkxηk0)− w0(zs + φkzηk0)

u2
0 + w2

0

]
∆q

+

[
w0(ys + φkyηk0

)

u2
0 + w2

0

]
∆r +

[
u0 φkz − w0 φkx

u2
0 + w2

0

]
∆η̇k (52)

using the body axes, or

∆αD = ∆α+

[
cosα0(ys + φkyηk0

)

V0 cosβ0

]
∆p

+

[
− cosα0(xs + φkxηk0)− sinα0(zs + φkxηk0)

V0 cosβ0

]
∆q

+

[
sinα0(ys + φkyηk0

)

V0 cosβ0

]
∆r +

[
φkz cosα0 − φkx sinα0

V0 cosβ0

]
∆η̇k (53)

using the stability axes. These linearization are similar to those for rigid aircraft but include the modal rate
contribution.

Flight test data in figures 3–4 show that the short period and SW1B modes affected the measured data,
whereas the SW1T mode did not. This is because angle of attack strongly participates in the classical short
period mode, and because φ7z was large along the air data boom, as shown in figure 5. The SW1T mode,
however, did not have a large mode shape φ9z at the sensor position.
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Flank Angle and Sideslip Angle

Similar to the angle of attack, an air flow angle vane is often used to measure flank angle. The output
measurement equation for a sensor at D is

µD = arctan

(
vD
uD

)

= arctan

(
v + r(xs + φkxηk)− p(zs + φkzηk) + φky η̇k

u− r(ys + φkyηk) + q(zs + φkzηk) + φkx η̇k

)
(54)

The output can again be reduced by assuming negligible vibration mode displacements, low aerodynamic
flow angles, low angular rates, and high speeds, so that the flank angle is approximately

µD = µ+
rxs − pzs + φky η̇k

V
(55)

Again, these assumptions are questionable for subscale aircraft [20]. The flank angle is related to the sideslip
angle and angle of attack as

β = arctan(tanµ cosα) (56)

Using this relation and under these assumptions, µ ' β and equation (55) becomes

µD = β +
rxs − pzs + φky η̇k

V
(57)

Again, this is the conventional position-offset correction applied to flank angle measurements [1, 3, 20] with
an additional modal rate term.

Linearizing the flank angle output with the body axes produces

∆µD =

[
−v0

u2
0 + v2

0

]
∆u+

[
u0

u2
0 + v2

0

]
∆v +

[
−u0(zs + φkzηk0

)

u2
0 + v2

0

]
∆p

+

[
−v0(zs + φkzηk0

)

u2
0 + v2

0

]
∆q +

[
u0(xs + φkxηk0

) + v0(ys + φkyηk0
)

u2
0 + v2

0

]
∆r

+

[
u0 φky − v0 φkx

u2
0 + v2

0

]
∆η̇k (58)

or, using the stability axes,

∆µD =
[
V 2

0 cosα0

] ∆β

Γ0
+
[
V 2

0 sinα0 sinβ0 cosβ0

] ∆α

Γ0

+ [−V0 cosα0 cosβ0(zs + φkzηk0
]

∆p

Γ0
+ [−V0 sinβ0(zs + φkzηk0

]
∆q

Γ0

+
[
V0 cosα0 cosβ0(xs + φkxηk0

) + V0 sinβ0(ys + φkyηk0
)
] ∆r

Γ0

+
[
φkyV0 cosα0 cosβ0 − φkxV0 sinβ0

] ∆η̇k
Γ0

(59)

where the common denominator
Γ0 = V 2

0 (cos2 α0 cos2 β0 + sin2 β0) (60)

was factored for convenience.
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5 Conclusions

In this report, output measurement equations for sensors commonly used in flight dynamics analyses
were developed. These equations incorporated the effects of a deforming aircraft structure, which was
represented using an expansion of orthogonal mode shapes. The output equations included linear and angular
accelerometers, strain gauges, rate gyroscopes, Euler angles, airspeed, and air-flow angle measurements.
Afterwards, various assumptions were explored and applied to simplify the output equations. Flight data
from the X-56A aeroelastic demonstrator were discussed for context.

The output measurement equations developed in this report may be generalized in several ways. First,
more realistic sensor models can be obtained by including other effects such as measurement noise, bias
errors, time delays, etc. These effects were omitted in this report to focus on the structural deformation
contributions. Second, more general parameterizations of the aircraft structural deformation could be used to
model nonlinear deformations, such as with larger HALE-type aircraft. Linear superpositions of orthogonal
vibration mode shapes were used in this report because this parameterization is typically useful and insightful,
and because aeroelastic analyses are traditionally performed using linear models.

Assumptions were explored to simplify the output equations for a variety of conditions. In some cases,
nonlinearities were simplified and/or some of the contributions of the structural deformation were neglected.
In other cases, the output equations were linearized to provide first-order approximations that could be
assembled into transfer function or state-space models typically used in flight dynamics-related work such
as simulation, feedback control design, and system identification.

In determining which output equations to use for a specific purpose, it is recommended to first consider
the flexibility of the aircraft, bandwidth of the relevant structural resonances, and goals for the analysis.
From there, the full output equations should be simplified as much as possible. The equations compiled and
discussed in this report can, in many cases, provide those equations, or if not, they can provide guidance for
obtaining those equations.
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Appendix A — Derivation of Accelerometer Outputs

The accelerometer output can be derived using Newton’s second law applied to a rigid aircraft with
constant mass at the mass center B?

∑
f =

Nd

dt
(mNvB?)

= m

(
Bd

dt
(NvB?) + ω×NvB?

)
(A-1)

where f are applied forces on the aircraft. Considering only forces due to aerodynamics, propulsion, and
gravity, this equation expands to

fa + fp + fg = m

(
Bd

dt
(NvB?) + ω×NvB?

)
(A-2)

where

fa = q̄SCX b1 + q̄SCY b2 + q̄SCZ b3 (A-3)

fp = Xp b1 + Yp b2 + Zp b3 (A-4)

fg = (−mg sin θ)b1 + (mg sinφ cos θ)b2 + (mg cosφ cos θ)b3 (A-5)

Equation (A-2) can be rearranged as

1

m
(fa + fp) =

Bd

dt
(NvB?) + ω×NvB? − 1

m
fg (A-6)

which is discussed in more detail below.

Linear accelerometers measure the specific forces acting on the aircraft, excluding the gravitational force
[3, 16]. In steady level flight, 1 g of downward acceleration due to gravity is balanced by 1 g of upward
acceleration due to lift. However, a vertical accelerometer will register 1 g of upward acceleration because
the gravitational contribution is excluded from the output. According to this description, the equation for
an accelerometer output at the mass center B? of a rigid aircraft is equal to the left side of equation (A-6)

g aB? =
1

m
(fa + fp) (A-7a)

or, equivalently, the the right side of equation (A-6)

g aB? =
Bd

dt
(NvB?) + ω×NvB? − 1

m
fg (A-7b)

Note that a is used for the accelerometer output, whereas a is used for the kinematic acceleration. Although
accelerometer measurements are typically provided in g units, the factor g remains on the left side of the
equations in this report for convenience.

The first form of the accelerometer output, given in equation (A-7a), is written in terms of the applied
forces on the aircraft, excluding gravity. It may be the simpler of the two forms, and is often used in
aircraft parameter estimation when the applied forces are of primary interest [3, 16], and also in simulation
applications because the applied forces are computed to solve the equations of motion. The second form
of the accelerometer output, given in equation (A-7b), uses the aircraft states and their derivatives, and is
potentially more complex than the first form. This form is commonly used in flight dynamics analyses and
transfer function models because of its explicit dependence on the aircraft states [4, 6, 8].

23



When accelerometers are not located at the aircraft mass center, additional accelerations are registered
by the sensor. Using equation (5), the corrections

g aD = g aB? + 2ω×BvD +α×(rB
?C + rCD) + ω×[ω×(rB

?C + rCD)] + BaD (A-8)

are applied to equation (A-7a) or (A-7b) to account for these additional terms. Scalar expansions of the
output are presented as equations (28a)–(28c) and (34a)–(34c) for the first and second forms, respectively.
When the local structural deformation, velocity, and acceleration are all zero, the conventional accelerometer
position offset corrections [1] are recovered.
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Figures

Figure 1: X-56A airplane (credit: NASA / Jim Ross).
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Figure 2: Three-view drawing of the X-56A.
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Figure 3: Measured flight test data for the X-56A (Phase 1, Flight 11, FTA 300).
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Figure 4: Amplitude spectra of the X-56A measurements.
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(a) Mode 7: first symmetric wing bending (SW1B).

(b) Mode 9: first symmetric wing torsion (SW1T).

Figure 5: Scaled mode shapes for the X-56A (FEM configuration 24611, version 10.424, 50% fuel);
gray dots are the undeformed grid points and black dots are the corresponding deformed
points.
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Figure 6: Schematic for a generic flexible aircraft.

30



10−1

100

101

102

103

104

105

106

0.1 1 10 100

Relative
amplitude

Frequency, Hz

Displacement

Rate

Acceleration

10−1

100

101

102

103

104

105

106

0.1 1 10 100

Figure 7: Variation of vibration mode displacement, rate, and acceleration relative amplitudes with
frequency.

ub1

v b2
w b3

α

β

µ

V

NvB?

1

Figure 8: Velocity component and aerodynamic flow angle definitions.

31



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-10-2018

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Output Measurement Equations for Flexible Aircraft Flight Dynamics

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
081876.02.07.02.01.01

6. AUTHOR(S)

Jared A. Grauer
Langley Research Center, Hampton, Virginia

Matthew J. Boucher
Armstrong Flight Research Center, Edwards, California

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center

Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–20956

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration

Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2018–220102

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 08
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A summary of output measurement equations for onboard sensors used in flight testing flexible aircraft is presented. These equations
include the effects of structural flexibility and are considerably more complex than the standard equations for rigid-body aircraft. The
output equations discussed include accelerations from linear and angular accelerometers, strains, angular rates, Euler angles, true
airspeed, and air flow angles. The output equations are derived in full form and then simplified. Linearized output equations, suitable
for state-space or transfer function models, are also developed. Example flight test data from the X-56A subscale aeroelastic
demonstrator is discussed for reference.

15. SUBJECT TERMS

Measurement equations, Flexible aircraft, Aeroelasticity, Flight Dynamics

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

36

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)
(757) 864-9658


	Nomenclature
	Introduction
	Motivational Example
	Kinematic Relationships
	Output Measurement Equations
	Conclusions
	Acknowledgements
	References
	Appendix — Derivation of Accelerometer Outputs
	Figures

