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Technical Assessment Report 

1.0 Scope  

Determination of stress field and constraint around the crack tip is critical for achieving reliable 

fracture control analysis results for all space and non-space programs that require fracture control 

analysis.  The vast majority of fracture mechanics analysis performed in support of fracture 

control rationale is carried out using reasonably conservative values for initiation fracture 

toughness derived from high constraint test geometries.  An attempt is made to reduce 

conservatism and consider constraint specific toughness capability.  This required using J 

resistance curve data obtained from standard specimens that were adjusted to match the 

component versus test specimen constraint level (i.e., A constraint parameter).  

For effectively performing this improved analysis approach, a special software code was 

required that was accurate, efficient, and easy to use.  This report summarizes the attempts at 

ongoing processes to achieve development of such software. 

The key stakeholders for this assessment are all NASA and commercial space companies that 

need to meet fracture control requirements for human and robotic programs. 
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4.0 Executive Summary 

Characterization of the near crack-tip stress/strain fields is the foundation of fracture mechanics.  

The description of the near tip stress field and the prediction of when fracture occurs is well 

established for brittle materials that exhibit linear elastic behavior.  However, in ductile materials 

or conditions that violate linear elastic assumptions (Aluminum alloys, Al 2024-T3, Al 2024-

T351 etc.), the elastic-plastic crack-tip stress fields are characterized by the Hutchison-Rice-

Rosengren (HRR) field.  The J-integral is commonly used to characterize amplitude of the HRR 

field under elastic-plastic conditions.  The J-integral has been demonstrated for crack-tip fields 

that are under high constraint conditions (i.e., small-scale plasticity where the J-dominance is 

maintained).  However, as the external load increases, yielding changes from small- to large-

scale plasticity and usually a loss of constraint (i.e., reduction in the triaxial stress field along the 

crack front).  The loss of constraint leads to the deviation of the crack-tip stress fields from that 

given by the HRR field.  Hence, the J-dominance will be gradually lost and additional 

parameter(s) are required to quantify the crack-tip stress fields and predict fracture behavior.  

The assessment objectives were to: 1) implement a two-parameter (i.e., J-A) fracture criterion 

into an elastic-plastic three-dimensional (3D) finite element analysis (FEA), 2) validate the 

implementation by comparison with the A parameter from literature data, 3) conduct material 

characterization tests to quantify the material behavior and provide fracture data for validation of 

the J-A fracture criteria, and (4) perform evaluations to establish if the J-A criteria can be used to 

predict fracture in a ductile metallic material (e.g., aluminum alloys).  The A parameter in these 

criteria is the second parameter in a three-term elastic–plastic asymptotic expansion of the near-

tip stress behavior.  

A series of extensive FEAs were performed using WARP3D [ref. 27]1 software package to 

obtain solutions for the A parameter for different specimen configurations.  The methodology 

needed for the estimation of the A parameter in the asymptotic expansion was developed and 

implemented using Matlab® [ref. 29].  A user material (UMAT) routine was used to model the 

material stress-strain response using a Ramberg-Osgood power law with a hardening exponent 

(n) and a material coefficient (α).  This UMAT routine was successfully implemented in 

WARP3D software and validated through comparison with the experimental data.   

Three configurations were extracted from published results: 1) center cracked plate (CCP),  

2) single edge-cracked plate (SECP), and 3) double edge-cracked plate (DECP).  These 

configurations and four other configurations (three-hole tension (THT)), three-point bend 

(3PTB), three-hole compact tension (3PCT), and compact tension (CT)) were analyzed to verify 

the methodology that was developed and implemented into WARP3D.  Solutions of the A 

parameter were obtained for remote tension loading conditions that started with small-scale 

yielding and continued into the large-scale plasticity regime.  The results indicate that the 

methodology developed can be used to calculate the elastic–plastic J-A parameters for test 

specimens with a range of crack geometries, material strain hardening behaviors, and loading 

conditions.  The J-A parameters were implemented as fracture criteria and used to predict the test 

results.  For comparison, other fracture criteria were used to predict the same test results. 

                                                 
1 WARP3D is an open source finite element code for 3D nonlinear analysis of solids.  The capabilities of the code 

focus on fatigue & fracture analyses, primarily in metals.  WARP is not an acronym, but a term borrowed from the 

Star Trek TV series. 



 
NESC Document #: NESC-RP-14-01001 Page #:  9 of 67 

Major findings include: The A constraint parameter A varies with specimen type and applied load 

thus accurate determination is crucial in predicting the failure load, and the A parameter is 

asymptotic as the failure load is approached, making an accurate determination difficult  

(i.e., small differences in the A parameter can cause large variations in failure load) for materials 

exhibiting elastic-plastic behavior.  The failure predictions from J-A methodology were more 

accurate than the traditionally used KC and J methods, and have comparable scatter to that 

observed when using the crack-tip opening angle (CTOA) method.  However, the J-A 

methodology requires considerable effort (expertise level and labor) to implement and to 

evaluate the A parameter for different specimen types and materials, or to apply this 

methodology to part-through crack (e.g., 3D problems) structural applications. 
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5.0 Background/Problem Description 

Characterizations of crack-tip stress/strain fields are the foundation of fracture mechanics.  In 

classical elastic-plastic fracture mechanics (EPFM), the J-integral is commonly used to 

characterize amplitude of the elastic-plastic crack-tip stress fields (i.e., the HRR field)  

[refs. 1–3].  The J-integral has been demonstrated for crack-tip fields under high constraint 

conditions where the J-dominance is maintained and the HRR fields [refs. 2 and 3] characterize 

the crack-tip stress/strain fields.  However, as the external load increases from small- to large-

scale yielding, there is a loss of constraint along the crack front and the stress field deviates from 

that given by the HRR fields.  Hence, the J-dominance will be gradually lost and additional 

parameter(s) would be required to quantify the crack-tip stress fields.  All the detailed 

information involving crack-tip stress fields, J-integral, HRR field and CTOA are presented in 

Appendix A. 

Several two-parameter approaches for elastic–plastic crack-tip fields have been proposed to 

overcome the limitation of J-based fracture mechanics approach.  References 4 and 5 proposed to 

use the amplitude of the second term in the asymptotic expansion for mode I plane-strain 

condition of power-law hardening material as an additional parameter.  References 6 through 8 

proposed the J-T approach using the second term of Williams’ expansion of the elastic crack-tip 

field  [ref. 9] as constraint parameter (T) to describe elastic–plastic crack-tip fields for a variety 

of plane-strain cases.  References 10 and 11 suggested the J-Q approach based on the main 

feature of the elastic–plastic crack-tip stress fields.  The second fracture parameter Q is defined 

as the difference between the stresses in crack-tip region determined by numerical analysis and 

the HRR or small-scale yielding (SSY) stress fields.  A detailed discussion on two parameter 

approaches J-T and J-Q are presented in Appendix A.  References 12 and 13 expanded on 

references 4 and 5 by conducting a more sophisticated analysis of the higher order terms of 

asymptotic expansion of stress and displacement fields in the crack-tip.  A three-term expansion 

of the crack-tip field was derived with J and A that is the dimensionless amplitude of the second 

order term.  This work confirmed that, in general a two-term expansion is not sufficient to 

characterize crack-tip behavior, but using more than three terms in the asymptotic expansion of 

field is redundant for plane strain mode I cracks.  Later, references 14 and 15 presented the three-

term expansion in another format and suggested to use the magnitude of the second term in the 

series expansion A, with J to characterize the crack-tip stress fields. 

In summary, it has been shown that these two-parameter approaches (i.e., J-T, J-Q and J-A) 

provide effective characterization of plane-strain elastic–plastic crack-tip fields in a variety of 

crack configurations and loading conditions.  To use the constraint-based structural integrity 

procedures, both the first parameter (i.e., J-integral) and the second parameter (i.e., constraint 

parameter) need to be obtained for the cracked components under consideration.  In particular, 

the numerical and analytical methods to obtain T-stress for two-dimensional (2D) and 3D crack 

geometries have been developed [refs. 16–19].  Solutions of T-stress were developed for a range 

of 2D and 3D crack geometries and loading conditions [refs. 19-22].  However, unlike the  

T-stress, the determination of the second elastic-plastic parameters (e.g., Q and A) are not as well 

established.  Due to material nonlinearities, the elastic-plastic parameters will depend on the 

material hardening characteristics, specimen/crack geometry, and external loading conditions.  

Reference 23 suggested the one-to-one relationships between the Q factor and the T-stress under 

small to contained yielding conditions.  Contained yielding is defined as the state in which the 
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plastic zone is on a length scale that is small compared to, for example, crack length and 

thickness dimensions.  This reference also suggests using pure power-law hardening solutions to 

estimate Q factors under fully plastic conditions.  An overall empirical formula to estimate Q 

factors from small to large scale yielding was proposed by interpolating between the small-scale 

yielding solutions based on T-stress and the fully plastic solutions.  Reference 13 determined the 

A parameter values by matching the three-term expansion on one stress component with the 

finite element (FE) solutions at one or several locations within the plastic zone.  Reference 15 

suggested an algorithm to obtain the A parameter by fitting the three-term expansion using one 

typical stress component with the FE results in the region that is significant for the fracture 

process.  It is difficult to determine the Q or A values for a wide range of loading, geometric, and 

material properties.  Therefore, available solutions for Q or A are limited.  Some solutions can be 

found for 2D [refs. 24-26], but further systematic development is required. 

The overall goal of this study was to evaluate J-A methodology to determine the applicability of 

using this approach as failure prediction tool.  This required the understanding of the advantages 

and limitations of the technique and the associated implementation challenges involved in the 

incorporation into commercial codes.  The assessment plan was to: implement the J-A fracture 

criteria into a FEA; verify the calculated A parameter with available literature data; and evaluate 

if the J-A criteria can be used to predict fracture in ductile metallic materials.  

Material characterization and fracture tests were conducted on 2024-T3 aluminum coupons 

extracted from 1-inch thick plates.  The material characterization tests included tensile and 

tension/torsion tests to generate data for the stress-strain model required in the finite element 

analysis.  The fracture tests included several different configurations to provide different levels 

of constraint for evaluation of the fracture model.  The description of different types of tests 

conducted are explained in Appendix B. 

Series of extensive FEAs were conducted using WARP3D software to obtain solutions of the A 

parameter for different types of test specimen configurations.  The methodology needed for the 

estimation of the A parameter in the asymptotic expansion was developed and implemented 

using Matlab® software.  Empirical equations to predict the A parameter under SSY to fully 

plastic conditions were developed based on FE results.  In particular, an empirical law [ref. 15] 

was implemented to enable the determination of the A parameter for a given crack configuration. 

Several configurations were analyzed using this methodology: 1) CCP, 2) SECP, and 3) DECP.  

Solutions of the A parameter accounted for material nonlinearity using the Ramberg–Osgood 

power law with n and α.  The UMAT routine that modeled the Ramberg-Osgood material 

behavior was successfully implemented in WARP3D software.  Remote tension loading was 

applied to generate behavior from small- to large-scale yielding.  In addition, the THT, 3PTB, 

and CT coupons were analyzed and the A parameter was estimated for each coupon and applied 

load condition.  The results indicate the methodology developed can used to calculate the second 

elastic–plastic fracture parameters for test specimens for a range of crack geometries, material 

strain hardening behaviors, and loading condition. 

5.1 Theoretical Background:  J-A Two-Parameter Characterization of Crack-tip Fields 

References 12 and 13 suggested the J–A2 two-parameter fracture mechanics approach.  The A2 

parameter represents the magnitude of the second term in the series expansion of crack-tip stress 

fields.  References 14 and 15 derived the same series expansion and suggested that the 

magnitude of second term in the series could be used with J to characterize the crack-tip stress 
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fields.  A similar approach (J-A) [ref. 15] used a different normalized form of A2.  In this report, 

the solutions of the A parameter were calculated and the formula expressions and the 

terminologies of variables used by references 14 and 15 were followed.  Once solutions of the A 

parameter were determined, the magnitude of A2 can be obtained.  The elastic–plastic material 

behavior is described by deformation theory with the Ramberg–Osgood uniaxial stress–strain 

curve: 

∈

∈0 
= 

𝜎

𝜎0
+  𝛼 (

𝜎

𝜎0
)𝑛 (1) 

where σo is the yield stress; α is a material coefficient; n is the hardening exponent (n > 1); εo = 

σo /E; and E is the Young’s modulus. 

The three-term asymptotic solution for stress near the crack-tip in elastic–plastic material can be 

written [refs. 14 and 15] as: 

𝜎𝑖𝑗

𝜎0 
= 𝐴0�̅�𝑠�̅�𝑖𝑗

(0)(𝜃) + 𝐴1�̅�𝑡�̅�𝑖𝑗
(1)(𝜃)+ 𝐴2�̅�2𝑡−𝑠�̅�𝑖𝑗

(2)(𝜃) (2) 

where 𝜎𝑖𝑗  are stress components, 𝜎𝑟𝑟, 𝜎𝜃𝜃 , and 𝜎𝑟𝜃 in the polar coordinate system with origin

at the crack-tip as shown in Appendix A-1; �̅�𝑖𝑗
(0)(𝜃), �̅�𝑖𝑗

(1)(𝜃), and �̅�𝑖𝑗
(2)(𝜃) are normalized

angular stress functions; the power “t” is an eigenvalue depending on  n of the Ramberg–Osgood 

relationship;  s = -1/(n + 1); and dimensionless radius �̅�  is defined as �̅� = r/(J/𝜎𝑜).

The coefficient 𝐴0 is defined as:

𝐴0 = (𝛼휀0𝐼𝑛)−1/(𝑛+1) (3) 

where 𝐼𝑛 is a scaling integral [refs. 2 and 3].  References 12 -14 demonstrated that under plane

strain conditions for n ≥ 3, the amplitude for the second order term 𝐴2 is related to the values of 

𝐴0 and 𝐴1 by: 𝐴2 =
𝐴1

2

𝐴0
⁄ .  For convenience, reference 15 introduced the amplitude parameter

A = -A1.  This allows the three-term asymptotic expansion to be expressed as: 

𝜎𝑖𝑗

𝜎0 
= 𝐴0�̅�𝑠�̅�𝑖𝑗

(0)(𝜃) − 𝐴�̅�𝑡�̅�𝑖𝑗
(1)(𝜃)+

𝐴2

𝐴0
�̅�2𝑡−𝑠�̅�𝑖𝑗

(2)(𝜃)
(4) 

The stress components can be obtained from Eq. (4) after the parameters J and A have been 

obtained for the crack geometry.  Reference 14 proposed a computational algorithm to determine 

the values of normalized angular functions 𝜎𝑖𝑗
(0)(𝜃), 𝜎𝑖𝑗

(1)(𝜃), and 𝜎𝑖𝑗
(2)(𝜃); asymptotic power “t”;

and scaling integral 𝐼𝑛.  For engineering applications, based on the computational algorithm [ref.

14], the values of parameters t, s, and 𝐼𝑛 are shown in Table 1 for materials with n = 3, 4, 5, 7,
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and 10.  The normalized functions �̅�𝑖𝑗
(0)(𝜃), 𝜎𝑖𝑗

(1)(𝜃), and 𝜎𝑖𝑗
(2)(𝜃) can be found in references 12

through14. 

Table 1. The Values of Asymptotic Powers s, t and Scaling Integral 𝑰𝒏
n = 3 n = 4 n = 5 n = 7 n = 10 

s -0.2500 -0.2000 -0.1667 -0.1250 -0.0909 

t -0.0128 0.0328 0.0546 0.0694 0.0698 

𝐼𝑛 5.5073 5.2213 5.0235 4.7655 4.5399 

5.2 Determination of the A Parameter 

The methods of determining J-integral have been established in the literature.  The domain 

integral method is used to calculate J for the FEAs conducted in this report.  Several methods 

were proposed to determine the values of amplitude for the A parameter.  The “point match” 

method solves the quadratic equation of the A parameter (Eq. (4)) for one or more points near the 

crack-tip using FE results for the selected stress component.  For example, references 12 and 13 

calculated the A parameter by averaging the calculated values at points �̅� = 2, 𝜃 =  0o, and 45o 

for stress components 𝜎𝑟 and/or 𝜎𝜃.  A method proposed in reference 15 obtained A by the fitting 

Eq. (4) to the FE results in the crack-tip region (i.e., typically between 1.5 ≤ �̅� ≤ 5 and 0o ≤ 𝜃 ≤ 

45o).  For example, for the ith fitting point, Eq. (4) can be expressed as: 

𝑒𝑖𝐴2 + 𝑓𝑖𝐴 + 𝑔𝑖 =  𝛿𝑖
(5) 

𝑒𝑖 =  
�̅�2𝑡−𝑠

𝐴0
�̅�(2) (𝜃𝑖)

(6) 

𝑓𝑖 =  −�̅�𝑖
𝑡�̅�𝑡�̅�(1) (𝜃𝑖) (7) 

𝑔𝑖 =  𝐴0�̅�𝑖
𝑠�̅�(0) (𝜃𝑖) −

𝜎𝐹𝐸𝑀(�̅�𝑖,𝜃𝑖)

𝜎0

(8) 

where 𝛿𝑖 is the deviation of the asymptotic stress field from the FE stress solution 𝜎𝐹𝐸𝑀 at the ith

fitting point with the polar coordinates �̅�𝑖, 𝜃𝑖.  Stress components 𝜎𝑟𝑟 , 𝜎𝜃𝜃, or some combinations 

(e.g., 𝜎𝑟𝑟 + 𝜎𝜃𝜃) can be used for fitting the stresses.  In general, the σ from Eqs. (5-8) can be 

either  𝜎𝑟𝑟 𝑜𝑟 𝜎𝜃𝜃  stress components, or some combination of the two.  Then, minimizing the 

sum of squares of the deviations ∑ 𝛿𝑖
2 with weights leads to a cubic equation for amplitude of the

A parameter as: 

𝑒𝐴3 +  𝑓𝐴2 + 𝑔𝐴 + ℎ =  0 (9) 

𝑒 = 2 ∑(𝑎𝑖
2𝑤𝑖

2)
(10) 

𝑓 = 3 ∑(𝑎𝑖𝑏𝑖𝑤𝑖
2)

(11) 
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𝑔 = ∑(2𝑎𝑖𝑐𝑖𝑤𝑖
2 + 𝑏𝑖

2𝑤𝑖
2) 

(12) 

 

ℎ =  ∑(𝑏𝑖𝑐𝑖𝑤𝑖
2) 

(13) 

where 𝑤𝑖 is the weight for the ith fitting point.  Weights for the points can be proportional to the 

area that is represented by the ith fitting point.  The A parameter values can be obtained by 

solving this cubic equation for three roots.  Off all the three roots, the root that has the same sign 

as that of ci is the appropriate root.  It was demonstrated in reference 15 that this method gives 

more consistent and accurate results for the A parameter compared to the ‘‘point match” method.  

In this report, least square fit regression analysis capability was used to determine A values using 

FE results. 

5.3 FEA 

Extensive FEA were performed using WARP3D to obtain the crack-tip stress fields for different 

coupon configurations and various loading conditions.  Eight noded brick elements (HEX8) and 

small strain formulation were used in the analyses.  The details of the models are outlined in the 

following sections.  The following material properties for 2024-T3 were used in FE analyses, 

Young’s modulus, E = 11128 ksi, Poisson’s ratio, 𝜈 = 0.3, Yield stress, 𝜎0 = 70.215 ksi, Material 

coefficient, α = 0.5 and Hardening exponent, n = 10.  J and A were estimated from these stress 

fields and the methodology developed to calculate the A parameter values at each loading 

condition.  J-values were obtained from WARP3D analysis using equivalent domain integral 

methods.  Typically, 5 to 6 domains were used around the crack front.  Convergence checks were 

performed to ensure consistent J-values. 

5.4 Implementation of UMAT routine 

2024-T3 material was modeled using Romberg-Osgood power law strain hardening relation.  

Circular unnotched tensile specimens and notched tension-torsion specimens were used in the 

tests.  Appendix B discusses details of all testing.  The material model used in current numerical 

investigation is based on deformation plasticity theory.  The Ramberg–Osgood power-law strain 

hardening relation was implemented as a UMAT routine in WARP3D.  The uniaxial tension 

stress–strain curve from Ramberg–Osgood relation is described in Eq. (1).  The UMAT routine 

was verified by conducting a series of uniaxial tension and combination of torsion-tension tests 

conducted on 2024-T3 aluminum, as described in Appendix B.  The results from the analyses are 

compared with test data in Figures 1 and 2.  As described in Appendix B, the global strain was 

obtained using virtual extensometers to extract the relative displacement of two points that were 

initially 1 inch apart.  The local strains used a similar virtual extensometer, but with an initial 

gage length that was 0.1 inch apart and located in the necking region. Variation in global and 

local stress and strain from test are represented by Global and Local solid lines in Figure1 

respectively.  Correspondingly, variation in WARP3D analysis global and local stress and strain 

are indicated by Global-warp3d and Local-warp3d solid lines respectively.  Similar comparisons 

between test and analysis under torsion-tension loading are shown in Figure 2.  The comparison 

shows acceptable agreement suggesting the validity of the implemented UMAT routine.  



 
NESC Document #: NESC-RP-14-01001 Page #:  15 of 67 

 

Figure 1. Comparison of uniaxial stress-strain response with test data. 

 
 

Figure 2. Comparison of notch tensile and torsion response with test data. 

5.5 Capability to Generate Visualization Tool Kit (VTK) Format Files for Visualization 

A new capability to view contour plots of displacement vector, strain, and stress tensors on 

undeformed and deformed geometry was developed to view in 3D format using PARAVIEW 

[ref. 28] software and the capability was developed using Matlab® software. 
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5.6 Capability to Determine A 

A new capability to determine amplitude of the A parameter that was discussed in previous 

Sections 5.1 and 5.2 was developed using Matlab® software.  This involved developing a script 

to read WARP3D analyses results and transferring them into polar coordinates and adding a least 

square fit regression analysis capability to determine A values. 

5.7 Verification of the A Parameter 

Three mode I coupon configurations, shown in Figure 3, CCP, SECP, and DECP, were analyzed 

using WARP3D.  The 3D finite element models (FEMs) for CCP, SECP, and DECP specimens 

were created using 3D brick elements.  A typical FE mesh used in WARP3D analyses is 

illustrated in Figure 4.  The 2D plane-strain conditions were simulated with the additional 

boundary condition of fixing the out-of-plane displacements (uZ = 0).  Remote tension loading 

was applied on the models of the three coupon configurations, and the ratio of coupon length to 

coupon width (H/W) was 2.0.  

 

Figure 3. Different specimens analyzed for verifying developed J-A prediction methodology. 
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Figure 4. A typical FE mesh and displacement in y-direction (in.) contour plot for center cracked 
specimen. 

The models were considered sufficiently long to simulate the coupons tested under remote 

tension loading.  A separate FEM was developed for each loading scenario to provide sufficient 

elements in the fracture process zone to evaluate the A values.  A typical FE mesh had around 

12,000 nodes and 9,000 eight-noded brick elements (see Figure 4).  Using symmetries, one 

quarter of CCP, a half of SECP, and a quarter of DECP specimen were modeled in the FEA.  The 

limit load (𝜎𝐿) are used to normalize the applied stress S for CCP, SECP, and DECP models  

[ref. 30] are represented by equations (14) through (16) for three coupon configurations. 

 

𝐶𝐶𝑃 ∶   𝜎𝐿 =
2

3
(1 −

𝑎

𝑊
)𝜎0  

 

(14) 

𝑆𝐸𝐶𝑃 ∶   𝜎𝐿 = 1.455
𝑎

𝑊
[−1 + √1 + (

𝑊 − 𝑎

𝑎
)

2

] 𝜎0 

(15) 

D𝐸𝐶𝑃 ∶   𝜎𝐿 = [0.36 + 0.91 (
𝑊−𝑎

𝑊
)] (

𝑊−𝑎

𝑊
) 𝜎0 

(16) 

 

where a is half or full crack length, and W is specimen width as shown in Figure 3.  CCPs were 

analyzed using WAR3D to determine the A parameter using the mesh shown in Figure 4.  

Following the recommendations of Nikishov, at least 80 to100 elements were used in the r_bar 

range from 1.5 to 5 to carry out regression analyses in the estimation of the A parameter. 

Representative displacement, strain, and stress contour plots were generated using developed 

Matlab® code, as shown in Figures 4 and 5.  The results of the A parameter for a/W = 0.5,  

n = 10, and α = 0.5 for increasing external load ratio S/σL are shown in Figure 6.  For 

comparison, the results from reference 15 and NAFISS and NASJA solutions are compared in 

the same figure.  Analyses results generated using WARP3D and current methodology correlates 
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with literature data in the range 0.6 ≤ S/σL  ≤ 1.2.  At values of S/σL below 0.6, the current 

methodology predicts marginally higher values of the A parameter, and at values of S/σL above 

1.2 the methodology under predicts the value of the A parameter.  Overall, the solution of the A 

parameter from the current methodology correlates with the literature data for the CCP specimen. 

 

 
Figure 5. A typical strain and stress (ksi) contour plot for center cracked specimen. 

 
Figure 6. Comparison of A predictions from WARP3D analysis for center cracked specimen. 
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Representative strain and stress contour plots for a SECP specimen are shown in Figure 7.  

Comparison of analysis solution of the A parameter for a/W = 0.5, n = 10, and α = 0.5 for 

increasing S/σL  for SECP specimen are shown in Figure 8.  The analysis solution prediction is 

higher when compared to reference 15 results.  This difference may be related to the different 

regression analysis algorithm used in the estimation of the A parameter.  Representative strain 

and stress contour plots for the DECP specimen are shown in Figure 9.  The comparison of 

analysis solution of the A parameter for a/W = 0.5, n = 10, and α = 0.5 for increasing S/L for the 

DECP specimen are shown in Figure 10.  Again, the analysis solution predicted is higher when 

compared to the reference 15 solution. 

 
Figure 7. A typical strain and stress (ksi) contour plot for SECP specimen. 
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Figure 8. Comparison of predicted A from WARP3D analysis for SECP specimen. 

 

 
Figure 9. A typical strain and stress (ksi) contour plot for DECP specimen. 
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Figure 10. Comparison of predicted A from WARP3D analysis for DECP specimen. 

5.8 Prediction of A for CT Specimen 

The CT specimen shown in Figure 11 was analyzed using WARP3D.  The specimen width  

W = 2.0 inches, and the thickness, was B = 0.75 inch.  The 3D FE meshes for CT specimen was 

created with 3D brick elements.  A typical FE mesh used in the WARP3D analyses is illustrated 

in Figure12.  Remote pin loading is applied to the model.  A typical FE mesh will have 14,430 

nodes and 11,032 eight noded brick elements (see Figure 12).  Only a half of CT specimen was 

modeled in the FE analysis due to symmetries.  Additional boundary conditions of uZ = 0, z = 0, 

and z = B were used to simulate 2D plane strain conditions.  A separate FEM was developed 

with sufficient elements in the fracture process zone to be able to evaluate the A parameter for 

each applied load condition.  Representative of displacement and stress contour plots were 

generated using developed Matlab® code, as shown in Figure 13.  The limit load 𝑃𝐿 was used to 

normalize the applied load P for CT specimen is represented by equation (17).   The ratio P/PL 

can go beyond 1 and other authors like Nikishkov and Yang et al. have shown in their study too 

that if can go beyond one up to 1.4.  The results of the A parameter solution for a/W = 0.5,  

n = 10, and α = 0.5 for increasing external load ratio P/PL is shown in Figure 14.  For most of 

applied load ratios (i.e., P/PL below 1.1) the predicted value of the A parameter remains nearly 

constant.  In other words, the constraint level at the crack-tip remains nearly constant over a 

larger portion of applied load ratio.  This is why CT specimens are preferred over other types of 

specimens in generating fracture parameters for different materials and thickness.  Only beyond 

applied ratio of 1.2 does the A parameter increase, indicating a loss of constraint at the crack-tip 

at higher load levels.  Overall, the solution of the A parameter for CT specimen remains constant 

for major portion of applied load. 
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Figure 11. Schematic of CT specimen. 

(all dimensions are in inches) 

 

Figure 12. A typical FE mesh for CT specimen. 
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Figure 13. A Typical displacement and stress (ksi) contour plot for CT specimen.  

 

Figure 14. Predicted A from WARP3D analysis for CT specimen. 

 

𝐶𝑇 ∶   𝑃𝐿 = 1.455𝜎𝑜𝑊𝐵 [−1 −
𝑎

𝑊
+ √2 + 2 (

𝑎

𝑊
)

2

] 

(17) 
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5.9 Comparison of A for CCP, SECP, DECP, and CT Specimen 

Variation in the A parameter for different specimen types are compared in Figure 15.  For a 

given normalized applied load, the comparison shows each specimen has different level of 

constraint at the crack-tip.  Due to variation in constraint level, the fracture behavior will vary 

depending on the specimen type.  Therefore, the level of initial constraint at the crack-tip and 

loss of constraint with increasing load will have significant influence on the fracture behavior 

and the expected failure load.  

 
Figure 15. Comparison of estimated A for different types of specimens. 

5.10 Prediction of A for 3PTB Specimen 

A typical 3PTB specimen, shown in Figure 16, was analyzed using WARP3D.  The specimen 

length was 7.5 inches, and the thickness was B = 0.75 inch.  3D FEMs for 3PTB specimen were 

created with 3D brick elements.  A schematic of 3PTB fixture dimension with CMOD 

measurement location is shown in Figure 17.  A typical FEM used in the WARP3D analyses is 

shown in Figure 18.  Remote bending load is applied on the model.  A typical FE mesh had 

10,945 nodes and 8,372 eight-noded brick elements.  Only a half of 3PTB specimen was 

modeled in the FEA due to symmetries.  Additional boundary condition of uZ = 0 was used on 

the z = 0 and z = B planes to simulate 2D plane strain conditions.  FEMs were developed for 

each applied load condition to provide sufficient elements in the fracture process zone to 

evaluate the A parameter.  Representative displacement and strain contour plots were generated 

using developed Matlab® code, as shown in Figure 19.  𝑃𝐿 was used to normalize the applied 

load P for 3PTB specimen is represented by equation (18).  The results of the A parameter 

solution for a/W = 0.3 and 0.6, n = 10, and α = 0.5 for increasing P/PL is shown in Figure 20.  At 

values of P/PL below 0.4, the predicted value of the A parameter for a/W =0.3 and 0.6 are 

comparable.  With increasing applied load, the A parameter increases, indicating a loss of 
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constraint.  For values of P/PL >1, the A parameter increases further at a higher rate for a/W = 0.3 

compared to 0.6 indicating larger rate of loss of constraint for a/W = 0.3.  Overall, the solution of 

the A parameter for 3PTB specimen implies that there is a loss of constraint at the crack-tip with 

increasing applied load, and the increase is larger for a/W = 0.3 compared to 0.6. 

 

3𝑃𝐵 ∶   𝑃𝐿 = 1.455𝜎𝑜

𝑊2

2𝐻
(

𝑊 − 𝑎

𝑊
)

2

 

(18) 

  

 

Figure 16. Schematic of 3PTB specimen. 

 
 

 

Figure 17. Schematic of 3PTB fixture dimensions. 
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Figure 18. A Typical FE mesh for 3PTB specimen. 

 

 
Figure 19. A Typical displacement (in.) and strain contour plot for 3PTB cracked specimen. 
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Figure 20. Predicted A from WARP3D analysis for 3PTB specimens. 

 

5.11 Prediction of A for THT Specimen 

A typical THT specimen shown in Figure 21 was analyzed using WARP3D.  The specimen 

width was W = 3.0 inches, and the thickness was B = 0.75 inch.  The CMOD location 

measurement is shown in Figure 21.  The 3D FE meshes for the THT specimen were created 

with 3D brick elements.  A typical FE mesh used in the WARP3D analyses is presented in 

Figure 22.  Remote tension loading is applied on the model, and the H/W = 4.  The typical THT 

mesh had 20,270 nodes and 15,564 eight noded brick elements.  Only a half of the THT 

specimen was modeled due to symmetries.  The 2D plane-strain conditions were simulated with 

the additional boundary conditions of uZ = 0, on surfaces (i.e., z = 0 and z = B).  A separate FEM 

was generated for each applied load condition to provide sufficient elements in the fracture 

process zone for the evaluation of the A parameter.  A strain and stress contours plots generated 

using developed Matlab® code are shown in Figure 23.  The limit load (stress) 𝜎𝐿 was used to 

normalize the applied load S for THT specimen.  The results of the A parameter solution for a/W 

= 0.05,  

n = 10, and α = 0.5 for increasing external load ratio S/σL is shown in Figure 24.  The predicted 

value of the A parameter remains constant for values of S/σL below 0.4, then increases indicating 

a loss of constraint with increasing load.  Overall, the solution of the A parameter for THT 

specimen implies that there is drastic variation in constraint at the crack-tip and the loss of 

constraint is higher with increasing applied S/σL value. 
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Figure 21. Schematic of THT specimen. 

 
Figure 22. A typical FE mesh for THT specimen. 
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Figure 23. Typical displacement (in.) and stress (ksi) contour plot for THT cracked specimen. 

 

 
Figure 24. Predicted A from WARP3D analysis for THT cracked specimen. 

5.12 Prediction of A Solutions for Part Through Cracks 

The methodology that was developed to evaluate the A parameter to study the level of constraint 

ahead of the crack-tip described in Sections 1.1 and 1.2 is valid under plane strain condition.  All 

the normalized angular stress functions, �̅�𝑖𝑗
(0)(𝜃), �̅�𝑖𝑗

(1)(𝜃), and �̅�𝑖𝑗
(2)(𝜃) evaluated at the 

crack-tip are for plane strain conditions.  For application under 3D part through crack conditions, 

relationship for angular stress functions have not been developed and thus would have to be 
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derived before current methodology can be applied under such conditions.  This effort was 

beyond the scope of this assessment.   

5.13 Prediction of J-A Solution for THT Specimen 

Comparison of variation in the J versus the A parameter is shown in Figure 25 for different initial 

crack lengths of the THT specimen.  J and A increase with applied load.  Note that increase in the 

value of the A parameter at the crack-tip indicates loss of constraint.  With further increase in 

applied load, the relationship between J and A becomes asymptotic.  This behavior was observed 

for all three crack lengths analyzed.  The J-A -values that correspond to the failure loads 

observed in the test are indicated by filled symbols in Figure 25.  Tests to determine failure for 

range of constrains were conducted as described in Appendix B.  Failure refers to unstable 

fracture that occurred at the maximum load observed during the test.  By knowing the failure 

load from the test, corresponding load was applied to the specimen in the numerical simulation. 

J and A values were estimated from the analysis results and plotted in the Figure 25 as filled 

symbols.  The symbols (i.e., failure points) lie on the asymptotic portion of the curve.  This 

suggests that failure occurs when the variation in J versus A become asymptotic. 

 
Figure 25. Prediction of J-A solution for THT specimen. 

5.14 Prediction of J-A Solution for 3PTB Specimen 

The variation in J versus A for a 3PBT specimen with different initial crack lengths is shown in 

Figure 26.  The J-A values that correspond to the failure loads observed in the test are indicated 

by filled symbols in Figure 26.  As with the THT specimen configuration, J and A increase with 

increasing load, and failure occurs in the asymptotic portion of the curve. 
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Figure 26. Prediction of J-A solution for 3PTB specimen. 

5.15 Prediction of J-A Solution for Different Types of Specimens 

Similar to THT and 3PTB specimens, the variation in J versus A was determined for other 

specimen configurations, and the J-A values determined for the failure loads observed in the 

tests, as shown in Figure 27.  The different specimen configurations have variations in width and 

crack length, producing a variation in the constraint behavior.  The failure point occurred in the 

asymptotic portion of the J-A curve for all the specimen configurations that were tested.  There 

appears to be a narrow band or range of constraint value A, where all of the specimens fail  

(i.e., between 0.39 to 0.42).  Since the band is relatively narrow, accurate determination of the A 

parameter is important to characterize or predict the instability of failure.  From Figure 27, A 

appears to be constant at failure for different specimens analyzed but it varies anywhere from 

0.38 to 0.44.  If J_total_critical and similarly A_critical, a constant value that describes the level 

of constraint at failure can be defined, then by normalizing J and A, one can come up with a 

Failure Assessment Diagram (FAD).  The envelope defines whether the specimen or coupon is 

safe or unsafe.  If the point is outside, then it is unsafe.  This can be explored in the future. 
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Figure 27. Comparison of J-A parameter for different types of specimens. 

5.16 Sensitivity of Failure Load to the A Parameter 

The sensitivity of failure load to the A parameter was examined by evaluating at the failure load, 

80% of the failure load, and 120% of the failure load, as shown in Figures 28 through 30, 

respectively.  Similarly, the normalized failure load (i.e., predicted failure load divided by the 

failure load observed in the test) was determined for A values of 0.37, 0.43, and 0.41, as shown 

in Figures 31 to 33, respectively.  As expected from the asymptotic J-A relationship near failure, 

small changes in the critical value of the A parameter have a strong influence on the predicted 

failure load.  An A value of 0.37 did not capture the influence of specimen size on the failure 

load, as seen by the variation of the failure loads for the MT and CT specimens shown in Figure 

31.  Similarly, an A value of 0.43 did not capture the influence of specimen configuration 

constraint, as seen by the variation in normalized failure loads for the MT and CT specimens 

shown in Figure 32.  From an empirical observation, the choice of an A value of 0.41 appears to 

best represent the failure loads observed in the tests for all specimen configurations and sizes.  
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Figure 28. Comparison of A for different specimen types at failure load. 

 
 

 

Figure 29. Comparison of A for different specimen types at 80% of failure load. 
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Figure 30. Comparison of A for different specimen types at 120% of failure load. 

 
 

 

Figure 31. Variation in normalized applied load for different specimen types at A = 0.37.  
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Figure 32. Variation in normalized applied load for different specimen types at A = 0.43.  

 
 

 

Figure 33. Variation in normalized applied load for different specimen types at A = 0.41. 
 

5.17 Comparison with Other Fracture Prediction Methods 

The failure loads predicted using the J-A approach was compared with predictions made with 

other techniques that have been used in fracture analysis.  The techniques examined were:  

1) linear elastic fracture toughness, KC; 2) elastic-plastic J; and 3) elastic-plastic CTOA.  
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The value of the stress intensity factor, assuming the initial crack length, at fracture was 

calculated for each test.  The values were normalized by the average for all of the tests, as shown 

in Figure 34.  The variation in predicted failure load (i.e., +40%) illustrates the problem with 

using linear elastic fracture mechanics for materials that experience ductile fracture.  Similarly, 

the use of the EPFM parameter J, shown in Figure 35, exhibits comparable levels of variation. 
 

 

Figure 34. Variation in normalized KC value for different specimen types. 
 

 

Figure 35. Variation in normalized J values for different specimen types. 

The CTOA technique has been used to predict fracture for ductile materials [ref. 31-32] by 

assuming the crack begins to tear when a critical angle of the crack surfaces is achieved.  This 

technique was used to predict the failure loads for different specimen configurations, as shown in 
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Figure 36.  The scatter in predicted values were similar to that obtained using the J-A fracture 

criteria with an A value of 0.41, and both the J-A and CTOA methods produced improved 

predictions (i.e., +20%) than KC or J as shown in Figure 37. 

 

 

Figure 36. Variation in normalized applied load for different load different specimen types using 
CTOA criterion. 

 

 
Figure 37.  Comparison of variation in normalized applied load for different specimen types using 

various methods. 
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5.18 Stable Tearing in Ductile Materials 

The ductile aluminum alloy 2024-T3 material was observed to experience stable tearing prior to 

peak load during some of the fracture tests, as shown in Figure 38.  The amount of stable tearing 

is dependent on the structure size and thickness (i.e., larger, thinner structures experience greater 

amounts of stable tearing) [refs. 31-32].  The J-A fracture criteria assumes the crack is stationary 

prior to the maximum load (i.e., fracture).  Furthermore, the basic assumptions inherent in the  

J-integral theory/criterion require a stationary crack; unloading in the region of crack growth is 

present when stable tearing is present.  The J-integral is no longer path independent and the 

theory breaks down once stable tearing occurs.  Thus, the use of a J-A fracture criteria would 

have to assume that the contribution of energy dissipation due stable tearing would be negligible 

to the overall toughness of the structure. 

 

 
Figure 38.  Example of stable tearing prior to reaching peak load in a 3PCT test. 

5.19 Conclusions 

This assessment implemented the J-A fracture criteria into the WARP3D EPFM code.  This was 

accomplished by: 

 Circular unnotched tensile specimens, notched tension-torsion specimens, 3PTB, THT, and 

CT specimens were tested as part of the study. 

 Implementing a Ramberg–Osgood power-law strain hardening material model relation as 

a WARP3D UMAT routine.  

 Using PARAVIEW/Matlab® software to develop a new capability to view contour plots 

of displacement vector, strain, and stress tensors on undeformed and deformed geometry 

was developed to view in 3D format using PARAVIEW software.  

 A new capability to determine the constraint parameter A was developed using Matlab® 

software using least square fit regression analysis capability.  

 Extensive elastic–plastic FEAs were conducted to calculate the A parameter for CCP, 

SECP, and DECP test specimens.  The external loading increased from small- to large-

scale yielding for those specimens.  In addition, the A parameter was predicted for other 

specimens (e.g., CT, 3PTB, and THT) from small- to large-scale yielding.  

a. 5,681 lbs. b. 5,867 lbs.

Stable Tearing
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6.0 Findings, Observations, and NESC Recommendations 

6.1 Findings 

The following findings were identified: 

F-1. The constraint parameter A varies with specimen type and applied load.  Accurate 

determination of A parameter is crucial in predicting the failure load. 

F-2. The constraint parameter A is asymptotic as the failure load is approached, making an 

accurate determination difficult (i.e., small differences in the A parameter can cause large 

variations in failure load). 

F-3. The failure predictions, for materials exhibiting elastic-plastic behavior, made using the  

J-A methodology had lower scatter than predictions made using KC and J methods. 

F-4. The scatter observed in failure load for different specimen types using J-A methodology is 

comparable to the CTOA method. 

6.2 Observations 

The following observations were identified: 

O-1. Comparisons with test data indicated that J methodology alone cannot predict the failure 

load.  

O-2. The J-A methodology requires considerable effort to implement and to evaluate the 

constraint parameter A for different specimen types and materials. 

O-3. The application of J-A methodology to part-through cracks (i.e., 3D problems), 

encountered in common structural applications, would require considerable effort to 

derive the local angular stress distributions that already exist for through cracks  

(i.e., 2D problems). 

O-4. The ductile materials may experience stable tearing prior to achieving peak load.  The 

stable tearing violates the stationary crack assumption inherent in the J-integral 

theory/criterion (deformation theory of plasticity). 

6.3 NESC Recommendation 

The following NESC recommendation are directed to all NASA and commercial space 

companies.  

R-1. The J-A methodology is currently not mature enough for implementation into flight 

certification fracture code because: 

 The asymptotic nature of the A near fracture requires additional research to 

develop the proper guidelines for use. 

 Additional research is required to extend the approach to complex 3D crack 

problems. 
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7.0 Alternative Viewpoints 

There were no alternative viewpoints identified during the course of this assessment by the 

NESC team or the NRB quorum. 

8.0 Recommendations for NASA Standards and Specifications 

No recommendations for NASA standards and specifications were identified as a result of this 

assessment.  

9.0 Definition of Terms  

Corrective Actions Changes to design processes, work instructions, workmanship practices, 

training, inspections, tests, procedures, specifications, drawings, tools, 

equipment, facilities, resources, or material that result in preventing, 

minimizing, or limiting the potential for recurrence of a problem.  

Finding A relevant factual conclusion and/or issue that is within the assessment 

scope and that the team has rigorously based on data from their 

independent analyses, tests, inspections, and/or reviews of technical 

documentation. 

Lessons Learned Knowledge, understanding, or conclusive insight gained by experience 

that may benefit other current or future NASA programs and projects.  

The experience may be positive, as in a successful test or mission, or 

negative, as in a mishap or failure. 

Observation A noteworthy fact, issue, and/or risk, which may not be directly within the 

assessment scope, but could generate a separate issue or concern if not 

addressed.  Alternatively, an observation can be a positive 

acknowledgement of a Center/Program/Project/Organization’s operational 

structure, tools, and/or support provided. 

Problem The subject of the independent technical assessment. 

Proximate Cause  The event(s) that occurred, including any condition(s) that existed 

immediately before the undesired outcome, directly resulted in its 

occurrence and, if eliminated or modified, would have prevented the 

undesired outcome. 

Recommendation A proposed measurable stakeholder action directly supported by specific 

Finding(s) and/or Observation(s) that will correct or mitigate an identified 

issue or risk. 

Root Cause One of multiple factors (events, conditions, or organizational factors) that 

contributed to or created the proximate cause and subsequent undesired 

outcome and, if eliminated or modified, would have prevented the 

undesired outcome.  Typically, multiple root causes contribute to an 

undesired outcome. 

Supporting Narrative A paragraph, or section, in an NESC final report that provides the detailed 

explanation of a succinctly worded finding or observation.  For example, 
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the logical deduction that led to a finding or observation; descriptions of 

assumptions, exceptions, clarifications, and boundary conditions.   

10.0 Acronyms and Nomenclature List 

2D  2-Dimensional 

3D  3-Dimensional 

3PCT  Three-Hole Compact Tension 

3PTB   Three-Point Bend 

CCP  Center Cracked Plate  

CMOD Crack Mouth Opening Displacement 

CT  Compact Tension 

CTOA  Crack-Tip Opening Angle 

DECP  Double Edge-Cracked Plate 

EPFM  Elastic-Plastic Fracture Mechanics 

HRR  Hutchison-Rice-Rosengren 

MSD  Multi-Site Damage  

SECP  Single Edge-Cracked Plate 

SSY  Small-Scale Yielding 

THT  Three-Hole Tension 

UMAT  User Material 

NAFISS NASA Fissure 

Nomenclature 

𝑎 = length of crack in SECT or DECT or half crack length in CCT specimen    

𝑒, 𝑓, 𝑔, ℎ, = coefficients of cubic equation for calculating constraint parameter A from 

FEA results 

𝑒𝑖, 𝑓𝑖 , 𝑔𝑖, ℎ𝑖   = coefficients of expression on deviation of the asymptotic stress fields from 

FEA stress calculation for the ith fitting point 

𝐴 = constraint parameter (second fracture parameter) in J-A crack-tip fields    

𝐴0, 𝐴1, 𝐴2   = amplitudes of three-term asymptotic expansion for J-A or J-A2 crack-

tip fields 

𝐵 = Thickness of the specimen 

𝐸 = Young’s modulus 

𝐻 = Height of the specimen 

𝐼𝑛   = scaling integral depending on hardening exponent, n 

𝐽 = J-integral 

𝑛 = material hardening exponent 

𝑃  = applied load on the specimen 

𝑃𝐿 = limit applied load on the specimen 

𝑟 = radius in polar coordinates at crack-tip 

�̅� = dimensionless radius in polar coordinates at crack-tip 

�̅��̅� = dimensionless radius in polar coordinates at crack-tip for the ith point 

𝑠, 𝑡 = powers in J-A crack-tip fields 

𝑤𝑖   = weight for the ith fitting element 

𝑊 = width of the specimen 

𝑥, 𝑦, 𝑧  = Cartesian co-ordinates 
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𝛼 = material coefficient in Ramberg-Osgood relationship 

𝛿𝑖 = deviation of asymptotic stress fields from the FEA stress solution for ith 

fitting point 

휀𝑖𝑗 = strain components 

휀𝑜 = yield strain 

𝜃 = angle in polar coordinates at the crack-tip 

𝜃𝑖 = angle in polar coordinates at the crack-tip for the ith fitting point 

𝑆 = remote tension stress applied on the boundary of the specimen 

𝜎𝑖𝑗 = stress components 

𝜎𝑜 = yield stress 

𝜎𝐹𝐸𝑀 = stress valued from finite element analysis 

𝜎𝑖𝑗
(0)

, 𝜎𝑖𝑗
(1)

  = dimensionless angular stress functions in J-A crack-tip fields 

𝜎𝑖𝑗
(2)

 = dimensionless angular stress functions in J-A crack-tip fields 

𝜎𝐿 = limit load on the specimen 

𝜈 = Poisson’s ratio 
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Appendix A.  Crack-Tip Stress Fields, J-integral, HRR Field CTOA 

and Two-Parameter J-T and J-Q Details 

A-1. Stress Field around a Crack-tip 

Brittle fracture in a solid in the form of crack growth is governed by the stress field around the 

crack-tip and by parameters that describe the resistance of the material to crack growth.  Thus, 

the analysis of stresses near the crack-tip constitutes an essential part of fracture mechanics.  For 

brittle materials exhibiting linear elastic behavior, methods of elasticity are used to obtain 

stresses and displacements in cracked bodies.  These methods include analytical ones, such as the 

complex potential function method and the integral transform method, and numerical ones, such 

as the FE method.  The characteristics of the near-tip asymptotic stress and displacement fields 

and the crack growth criterion based on the crack-tip field are discussed.  A crack in a solid 

consists of disjoined upper and lower faces.  The joint of the two crack faces forms the crack 

front.  The two crack faces are usually assumed to lie in the same surface before deformation.  

When the cracked body is subjected to external loads (remotely or at the crack surfaces), the two 

crack faces move with respect to each other and these movements may be described by the 

differences in displacements ux, uy, and uz between the upper and lower crack surfaces, where 

(x, y, z) is a local Cartesian coordinate system centered at the crack front with the x-axis 

perpendicular to the crack front, the y-axis perpendicular to the crack plane as shown in Figure 

A.1. 

 

 
Figure A.1. Schematic of crack-tip stress field. 

 

There are three independent fundamental fracture modes as pointed out by Irwin [ref. 33], and 

these are schematically illustrated in Figure A.2.  The basic fracture modes are Mode I, Mode II, 

and Mode III, and any fracture mode in a cracked body can be described by one of the three 

basic modes, or their combinations.  
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Figure A.2. Schematic of the basic fracture modes (a) Mode I (opening), (b) Mode II (sliding), and (c) 

Mode III (tearing). 

1. Mode I (Opening Mode): The two crack surfaces experience a jump only in uy, that is, 

they move away symmetrically with respect to the undeformed crack plane (xz-plane). 

2. Mode II (Sliding Mode): The two crack surfaces experience a jump only in ux, that is, 

they slide against each other along directions perpendicular to the crack front, but in the 

same undeformed plane. 

3. Mode III (Tearing Mode): The two crack surfaces experience a jump only in uz, that is, 

they tear over each other in the directions parallel to the crack front but in the same 

undeformed plane. 

 

The stresses ahead of the crack front can be expressed (refer Figures A.1)  
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 +𝑂(𝑟1/2)  
(A-5) 

 

where the three parameters, 𝐾𝐼, 𝐾𝐼𝐼,and 𝐾𝐼𝐼𝐼 are called stress-intensity factors corresponding to 

the opening, sliding and tearing modes of fractures, respectively.  These expressions show that 

the stresses have an inverse square root singularity at the crack-tip and the stress intensity factors 
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KI, KII, and KIII denote the severity of the stress fields of opening, in-plane shearing, and anti-

plane shearing, respectively.  

 

A-2. J-Integral   

By considering a small strain analysis, any deformation induced blunting of the crack-tip is 

neglected.  Using J2 deformation theory of plasticity (equivalent to nonlinear elasticity), the 

reversible stress-strain response is depicted schematically in Figure A.3. 

 

 
Figure A.3. Stress-strain response – J2 deformation theory of plasticity. 

 

J-integral was proposed by Eshelby [ref. 35] and later for crack problems by Rice [refs. 1, 30, 

34] and Cherepanov [ref. 36].  The integral can be written as 

 

𝐽 =  ∫ ( 𝑊 𝑑𝑦 −  𝑇 ∙
𝜕𝑢

𝜕𝑥
  𝑑𝑠

Г

 ) 

(A-6) 

 

where, W = W(x,y) = W(ε)  =  ∫ 𝜎𝑖𝑗 Ԁ휀𝑖𝑗
∈

0
 

     

with Г is a closed contour integral followed counter clockwise ( see Figure A.4) in a stressed 

solid, T is the tension (traction)  vector perpendicular to Г, T = 𝜎𝑖𝑗 𝑛𝑗 , where n is the outward 

drawn normal to Г, u is the displacement in the x direction and ds is an element of Г, W in  

Eq. (A-6) is the strain energy per unit volume.  J around a closed contour without any 

singularities is identically zero.  J is also a path independent around a crack-tip. 

Rice demonstrated that the J-integral around a crack-tip (see Figure A.4) is the change in 

potential energy for a virtual crack extension da: 
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Figure A.4. Schematic representation of J-integral around the crack-tip. 

 

𝐽 =  − 
𝜕𝑉

𝜕𝑎
 

  

(A-7) 

where V is the potential energy. 

 

For a linear elastic material,  − 
𝜕𝑉

𝜕𝑎
= 𝐺, the strain energy release rate; thus J = G.  

 

Thus for linear elastic materials,  

 

𝐽 = 𝐺 =   
𝐾2

𝐸
(1 − 𝜈2) 

  

(A-8) 

  

For proportional loading J2 deformation theory and J2 flow theory (incremental theory of 

plasticity) give results that are comparable (i.e., for monotonic loading, stationary cracks).  Not 

appropriate for situations where significant unloading occurs.  The total mechanical potential 

energy of the cracked body is, 𝑈𝑀 

 

𝑈𝑀 =  𝑈𝑒 + 𝑈𝑎𝑝𝑝  (A-9) 

 

𝑈𝑀 represents the sum of the stored strain potential energy and the potential energy of the 

applied loading. 

 

𝑈𝑀 =  ∫ 𝑤 𝑑𝐴 − ∫ 𝑇 ∙  𝑢 𝑑𝑠
𝑆𝐴

 

(A-10) 
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where, w = strain energy density (per unit volume) and 𝜎𝑖𝑗 =  
𝜕𝑤

𝜕𝜖𝑖𝑗
 , 

dA is element of cross-section A within S.  Now by evaluating the derivative of the mechanical 

potential energy, 𝑈𝑀 with respect to crack length, 

 

−
𝑑𝑈𝑀

𝑑𝑎
=  ∫ (𝑤 𝑑𝑦 − 𝑇 ∙  

𝜕𝑢

𝜕𝑥
 𝑑𝑠 )

𝑆

 

(A-11) 

 

≡ 𝐽.  (A-12) 

Thus, J represents the rate of change of net potential energy with respect to crack advance (per 

unit thickness of crack front) for a nonlinear elastic solid.  J also can be thought of as the energy 

flow into the crack-tip.  Thus, J is a measure of the singularity strength at the crack-tip for the 

case of elastic-plastic material response. 

 

This relationship can be used to infer an equivalent KIc value from JIc measurements in high 

toughness, ductile solids in which valid KIc testing will require unreasonably large test 

specimens. 

 

A-3. HRR field [refs. 2, 3] 

Consider a pure power law material response,  

𝜖

𝜖0
=   𝛼 (

𝜎

𝜎0
)

𝑛

 
(A-13) 

 

where 𝛼 = material constant, 𝜎0 = reference yield strength, 𝑛 = strain hardening exponent and 𝜖0 

= reference yield strain = 
𝜎0

𝐸
.  For linear elastic material  𝑛 = 1, for perfectly plastic response, 

𝑛 =  ∞.  With these assumptions, the crack-tip fields (HRR field) can be derived as  

 

𝜎𝑖𝑗 =   𝜎0  (
𝐽

𝛼𝜎0𝜖0𝐼𝑛𝑟
)

𝑛
𝑛+1

�̌�𝑖𝑗(𝜃, 𝑛) 

(A-14) 

 

𝜖𝑖𝑗 =   𝛼𝜎0  (
𝐽

𝛼𝜎0𝜖0𝐼𝑛𝑟
)

1
𝑛+1

𝜖�̌�𝑗(𝜃, 𝑛) 

(A-15) 

 

𝑢𝑖 =   𝛼𝜎0  (
𝐽

𝛼𝜎0𝜖0𝐼𝑛𝑟
)

𝑛
𝑛+1

𝑟   �̌�𝑖(𝜃, 𝑛) 

(A-16) 

 

function 𝐼𝑛 is a scaling integral depending on hardening exponent, 𝑛. �̌�𝑖𝑗(𝜃, 𝑛), 𝜖�̌�𝑗(𝜃, 𝑛) and 

  �̌�𝑖(𝜃, 𝑛) are dimensionless angular stress, strain and displacement functions. 
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A-4. CTOD 

The definition of CTOD, 𝛿𝑡 is somewhat arbitrary since the opening displacement varies as the 

crack-tip is approached and the also the distance from the crack-tip.  A commonly used 

operational definition is based on the 450 construction depicted below or measured at a fixed 

distance behind the crack-tip. 

 

 
Figure A.5. Schematic representation of CTOD for a blunted crack 

 

CTOD is related to J by the following expression, 

 

𝛿𝑡 =   𝑑𝑛

𝐽

𝜎0
  

(A-17) 

 

where, 𝑑𝑛 is a strong function of 𝑛, and a weak function of 
𝜎0

𝐸⁄ . 

 

For Plane Strain condition,  

𝑑𝑛 ≈ 0.3 − 0.65 ( 0.65 𝑓𝑜𝑟 𝑛 →  ∞ )  (A-18) 

For Plane Stress condition,  

𝑑𝑛 ≈ 0.5 − 1.07 ( 1.07 𝑓𝑜𝑟 𝑛 →  ∞ )  (A-19) 

Presuming dominance of HRR fields, 

 

𝛿𝑡 =   𝑑𝑛

𝐽

𝜎0
 ≈  

𝐽

𝜎0
  

(A-20) 

 

For Small, scale Yielding, (SSY), 

J =   
𝐾𝐼

2

𝐸
(1 − 𝜇2) 

(A-21) 

𝛿𝑡 =   𝑑𝑛
𝐾𝐼

2

𝐸
(

1− 𝜇2

𝜎0
) 

(A-22) 
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A-4. Two-parameter Characterization 

In the two-parameter characterization, the measure of asymptotic fields are represented by either 

stress intensity factor K, or the J-integral with an additional constraint parameter, such as the  

T-stress or stress difference Q. Generally, a two-parameter characterization is accomplished 

using modified boundary layer formulation (MBL).  Characterization and application of two-

parameter approach to crack problems were reported in fracture mechanics by numerous authors 

in references 6, 10-11, and 37-41.  In the following sections, the terminologies used in J-T and J-

Q two-parameter approach are briefly described. 

 

A-4.1 J-T Theory 

In the Williams expansion of a linear elastic stress field, the leading term has a 1/√r singularity 

and the second term is a term with r.  The second term under mode I crack opening is referred to 

as the T-stress and is shown in Equation A-23.  T-stress is defined as a uniform stress parallel to 

the crack plane and perpendicular to the crack front.  The negative T-stresses characterizes low 

crack-tip constraint while a positive T-stress characterizes high crack tip constraint.  Specimens 

or geometries with negative T-stress cannot maintain single parameter J-dominance due to loss 

of constraint associated with lowering of the stress state.  However, to some extent, for negative 

T-stress specimens, state of stress around the crack tip can be characterized by J-integral and T-

stress up to and not exceeding net section yielding [ref. 6].  With increase in applied load, 

changes in crack tip stress field distribution, plastic zone shape, and size changes lead to change 

in T-stress value.  The size and shape of the plastic zone ahead of the crack tip is directly 

dependent on constraint level.  Dependence of plastic zone size and shape on T-stress is shown 

in Figure A-6.  Low T (T/σo = -1) results in moving the plastic zone away from the crack 

front/tip while high T (T/σo = +1) shifts the zone towards the opening face/tip. Zero T/σo results 

in a plastic zone is a common of the “plane-strain” small scale yielding condition.  The T-stress 

factors are available in literature for a number of standard facture mechanics specimens making 

it a valuable measure of constraint for engineering applications.  

 

𝜎𝑖𝑗(𝑟, 𝜃) =   
𝐾𝐼

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) + 𝑇𝛿1𝑖𝛿1𝑗 

(A-23) 

 

where, δij is the Kronecker delta. 
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Figure A.6. Plastic zone shapes diagram for high (T/σo = 1), zero (T/σo = 0) and low (T/σo = -1) 

 T-stresses. (σo is the yield stress of the material) 

A-4.2 J-Q Theory 

As mentioned previously, measure of stress field within the plastic zone is a more accurate 

determination of constraint within the plastic zone.  A more accurate measure of constraint 

around the crack tip and within the plastic zone for geometries undergoing large-scale plasticity 

can be accomplished by estimating the Q-parameter.  Wang [ref. 26] showed that the Q 

parameter as a measure of the difference between the actual opening stress and the small scale 

yielding solution for a range of normalized radial distance (r/(J/σo)). Many investigators have 

implemented J-Q theory to characterize crack tip stress fields for 2D and 3D geometries  

[refs. 10-11, 37-41].  The parameter Q is estimated as the difference between the actual hoop 

stress (σθθ) and a reference hoop stress within a cracked body.  Using Q parameter, the near crack 

tip field is represented by [refs. 10, 11], 

 

 𝜎𝑖𝑗(𝑟, 𝜃) =   [𝜎𝑖𝑗 (
𝑟

𝐽
𝜎𝑜

⁄
, 𝜃)]

𝑇=0

+ 𝑄𝜎𝑜𝛿𝑖𝑗  𝑓𝑜𝑟 −𝜋
2 ⁄ ≤  𝜃 ≤ 𝜋

2 ⁄    
(A-24) 

 
within a range of normalized radial distances, typically 1.5 ≤ r/(J/σo) ≤ 5.  

 

The first term is equation A-24 is the small scale yielding solution and δij is the Kronecker delta. 

Silva et al. [ref. 41] have shown that, Q parameter can be considered as a fracture parameter by 

evaluating at a fixed normalized radial distance equal to 2J/σ0 from the crack tip.  This marks the 

location from where cleavage mechanism of fracture is triggered ahead of the crack tip.  

Following that, Q can now be defined as the hoop stress difference in the cracked plane (opening 

stress or σyy) at a radial distance equal to 2J/σ0: 

 

𝑄 =   
𝜎𝑦𝑦 −  (𝜎𝑦𝑦)𝑇=0

𝜎𝑜
  𝑎𝑡  𝜃 = 0 𝑎𝑛𝑑 𝑟 = 2𝐽/𝜎0   

(A-25) 
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Using this definition of constraint, a plane-strain J-Q family of curves can be constructed using 

the modified boundary layer finite element formulation for different materials and loading 

conditions. 
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Appendix B.  Material Testing Summary 

Material characterization and fracture tests were conducted on 2024-T3 aluminum coupons 

extracted from 1-inch thick plates.  The material characterization tests included tensile and 

tension/torsion tests to generate data for the stress-strain model required in the finite element 

analysis.  The fracture tests included several different configurations to provide different levels 

of constraint for evaluation of the fracture model.  The following sections describe each type of 

test conducted. 

 

Tensile Tests 

The tensile tests were conducted on round coupons that had a reduced diameter gage section, as 

shown in Figure B.1.  The coupons were loaded under displacement control at a ramp rate of  

0.01 inch/minute.  Three identical coupons were tested and full-field strain and displacement 

measurements were made using digital image correlation (DIC), as shown in Figure B.2.  The 

DIC produced the full-field displacements for both the gage section and the visible ends of the 

larger diameter grip section.  The global strain was obtained using virtual extensometers to 

extract the relative displacement of two points that were initially 1 inch apart.  The location of 

the virtual extensometer was selected after the test to include the region that experienced 

localized necking.  The global stresses were calculated from the initial area and the applied load 

measurement. 

The local strains used a similar virtual extensometer, but with an initial gage length that was  

0.1-inch apart and located in the necking region.  The local stresses were obtained by using the 

DIC measurements to calculate the reduction in the coupon radius as the coupon is stretch 

axially.  The resulting local stress-strain curve has greater strains and higher stresses than the 

global stress-strain curve. 

 

 
Figure B.1. Dimensions of the tensile coupon. 
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Figure B.2. Measurement of global and local strains using DIC. 

 

Tension/Torsion Tests 

Combined tension and torsion tests were conducted to provide data to verify that the material 

model used in the finite element analysis accurately depicted the behavior of the material.  The 

coupons were round, hollow, and notched, as shown in Figure B.3.  The tests were conducted at 

a constant rotation rate (2-degrees per minute) while loading in tension at a constant load.  The 

full-field rotations, displacements, and strains were measured using DIC.  The reported angular 

rotations were obtained by extracting points that were on the larger diameter grip section and 

were initially 2.65 inches apart.  The coupons were loaded to a constant value and the torque was 

increased, as shown in Figure B.4.  The maximum rotation of the load frame was about  

90-degrees, so the tests were not taken to failure.  The maximum rotation was achieved by 
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starting coupons PF-2, PF-3, and PF-4 at a load frame controller angle of -45-degrees and 

rotating to +45-degrees.  Coupon PF-1 was started at a load frame controller angle of 0-degrees, 

so the maximum angle that could be achieved was 45-degrees. 

 

 
Figure B.3. Dimensions of the tension/torsion coupon 

 

 
Figure B.4. Results from the tension/torsion tests. 

 

3PTB Tests 

3PTB tests were conducted on 0.75-inch-thick coupons.  Two different notch sizes were used: 

long notch (0.6 inch) and short notch (0.3).  The dimensions of the short notch coupon are 

provided in Figure B.5.  The long notch coupons were identical to the short notch coupons with 

the exception of the notch length. 
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The 3PTB coupons were fatigue precracked elastically at a stress ratio of R = 0.1 and a peak 

stress intensity factor of about 8 ksi inch1/2.  The dimensions of the 3PTB loading fixture is 

provided in Figure B.6.  The coupons were loaded to failure under displacement control at a rate 

of 0.005 inch/minute. 

 

 
Figure B.5.  Dimensions of the short notch 3PTB coupons. 

 

DIC was used to measure the notch tip opening displacement as a function of the applied load, as 

shown in Figure B.7.  The crack length after the fatigue precracking was measured by examining 

the post-failure surface and averaging the length across the crack front, as shown in Figure B.8.  

The crack growth during stable tearing created a distinct difference in the fracture morphology, 

clearly marking the end of the fatigue crack growth region.  The initial crack length and the 

resulting failure load from the 3PTB tests are shown in Figure B.9. 
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Figure B.6. Dimensions of the 3PTB loading fixture. 

 

 
Figure B.7. Measurement of the notch tip opening displacement for a 3PTB test. 
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Figure B.8. Measurement of the initial crack length in the 3PTB tests. 

 

 
Figure B.9. Results from the 3PTB tests. 
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Figure B.10.  Dimension of the middle crack tension coupon. 

 
Table B.1.  Results from the Middle Crack Tension Tests 

 Coupon ID Width 

(inch) 

Stress 

(psi) 

 

 MT3-1-P21 3 27.6  

 MT3-2-P22 3 30.1  

 MT6-1-P21 6 27.8  

 MT6-2-P22 6 27.9  

 MT12-1-P23 12 24.9  

 MT12-2-P23 12 25.2  

 

 

CT Tests 

CT tests were conducted on coupons that were proportionally the same size but with widths of  

W =2, 4, 6, and 8 inches.  The basic shape of the coupons is shown in Figure B.11.  The coupons 

were 0.75-inch thick and were precracked to different crack lengths.  The precracking was 

performed elastically at a stress ratio of R = 0.1 and a peak stress intensity factor of about 8 ksi 

inch1/2.  The coupons were loaded under displacement control to failure at a rate of 0.01 

inch/minute.  The recorded coupon width, crack length, and failure loads are provided in Table 

B.2. 
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Table B.2.  Results from the CT Tests 

 Coupon ID Width 

(inch) 

Initial Crack 

Length 

(inch) 

Load 

(lbs.) 

 

 1-P21 1.001 2 5.2  

 CT2-2-P22 0.801 2 7.45  

 CT2-3-P21 1.003 2 5.488  

 CT4-1-P21 2.831 4 3.426  

 CT4-2-P21 2.81 4 3.587  

 CT4-3-P21 2 4 10.14  

 CT4-4-P21 2.005 4 10.13  

 CT6-1-P21 3 6 14.18  

 CT6-2-P21 3.004 6 14.81  

 CT8-1-P21 5.811 8 6.876  

 CT8-3-P21 4.025 8 18.68  

 CT8-4-P21 4.098 8 19.28  

 CT8-5-P21 2.402 8 37.48  

 CT8-6-P21 2.401 8 37.19  

 

 
Figure B.11.  Dimensions of the CT coupons. 
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Three-hole Tension 

Fracture tests were conducted on the three-hole tension configuration shown in Figure B.12.  The 

smaller hole was notched and the coupon fatigue cycled at a stress ratio of R = 0.1 and a peak 

stress intensity factor of about 8 ksi inch1/2.  The coupons were loaded to failure under 

displacement control at a rate of 0.01 inch/minute.  The crack length after the fatigue precracking 

was measured by examining the post-failure surface and averaging the length across the crack 

front, as shown in Figure B.13.  The crack growth during stable tearing created a distinct 

difference in the fracture morphology, clearly marking the end of the fatigue crack growth 

region.  DIC was used to characterize the notch opening displacement as shown in Figure B.14.  

A summary of the initial crack lengths and stress as a function of notch opening displacement is 

provided in Figure B.15. 

 

 
Figure B.12.  Dimensions of the three-hole tension coupons. 
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Figure B.13.  Measurement of the initial crack length in the three-hole tension tests. 

Figure B.14.  DIC measurements from a three-hole tension tes.t 
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Figure B.15.  Initial crack lengths and failure stresses from the three-hole tension tests. 

3PCT 
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inch/minute.  The crack length after the fatigue precracking was measured by examining the 

post-failure surface and averaging the length across the crack front, as shown in Figure B.17.  

The crack growth during stable tearing created a distinct difference in the fracture morphology, 

clearly marking the end of the fatigue crack growth region.  DIC was used to characterize the 

notch opening displacement as shown in Figure B.18.  A summary of the initial crack lengths 

and stress as a function of notch opening displacement is provided in Figure B.19. 
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Figure B.16.  Dimensions of the 3PCT coupons. 
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Figure B.17.  Measurement of the initial crack length in the 3PCT tests. 

Figure B.18. DIC measurements from a 3PCT test. 
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Figure B.19. Initial crack lengths and failure loads from the 3PCT tests. 
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