# SPHERES

Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites

### SPHERES/Astrobee Working Group (SAWG) Quarterly Meeting

Jun 19th, 2018











| SPHERES   | Astrobee Working Group   | Join by phone 1-844-467-4685; 226968                                     |                   |          |                |            |           |
|-----------|--------------------------|--------------------------------------------------------------------------|-------------------|----------|----------------|------------|-----------|
| Draft, Su | bject to change          |                                                                          |                   |          |                |            |           |
| Date:     | June 19th, 2018, 9am PST | In-Person, Stanford, Room: Durand 450 (https://asl.stanford.edu/contact) |                   |          |                |            |           |
| Agenda    | Group                    | Project                                                                  | Name              | Time     | duration (min) | In-Person? | Atendance |
| (         | NASA Ames/Stanford       | Introductions                                                            | Marco Pavone      | 8:50 AM  | 0:10           |            |           |
| 3         | NASA HQ                  | AES Program Welcome                                                      | Andres Martinez   | 9:00 AM  | 0:05           | yes        | 1         |
| 2         | NASA Astrobee            | SPHERES Facility Status                                                  | Jose Benavides    | 9:05 AM  | 0:20           | yes        | 10        |
| 3         | NASA ISS                 | SPHERES PIM Status                                                       | Melissa Boyer     | 9:25 AM  | 0:15           | no         |           |
| 4         | NASA Astrobee            | Astrobee Overview and Status                                             | Maria Bualat      | 9:40 AM  | 0:20           | yes        | 5         |
| 5         | 5 NASA ISS               | Astrobee PIM Status                                                      | Larry Cotton      | 10:00 AM | 0:15           | no         |           |
| 6         | 5 NASA ISS TDO           | NASA ISS Program TDO overview                                            | Dave Hornyak      | 10:15 AM | 0:10           | no         |           |
| 7         | CASIS                    | CASIS Overview                                                           | Jennifer Lopez    | 10:25 AM | 0:10           | no         | 0         |
| 8         | 8 Break                  |                                                                          |                   | 10:35 AM | 0:15           |            |           |
| 9         | MIT                      | SPHERES SmoothNav, ReSwarm, Zero Robotics                                | Alvar Saenz-Otero | 10:50 AM | 0:30           | yes        | 1         |
| 10        | ) Airbus                 | SPHERES Tether Slosh                                                     | Hans Zachrau      | 11:20 AM | 0:15           | no         |           |
| 11        | Lunch                    |                                                                          |                   | 11:35 AM | 1:00           |            |           |
| 12        | 2 NASA Logistics         | REALM-2                                                                  | Andrew Chu        | 12:35 PM | 0:20           | no         |           |
| 13        | Astrobotic/Bosch         | Deep Audio Analytics                                                     | Fraser Kitchell   | 12:55 PM | 0:20           | no         | 0         |
| 14        | Stanford                 | Gecko-Inspired Adhesive Appendages for Automated Logistics               | Marco Pavone      | 1:15 PM  | 0:20           | yes        | 5         |
| 15        | 5 NPS                    | Propellantless mobility for spacecraft                                   | Marcello Romano   | 1:35 PM  | 0:20           | yes        | 4         |
| 16        | 5 FIT                    | RINGS/SVGS                                                               | Hector Gutierrez  | 1:55 PM  | 0:20           | yes        | 1         |
| 17        | 7 Break                  |                                                                          |                   | 2:15 PM  | 0:15           |            |           |
| 18        | 8 NMSU                   | MPC Control of Astrobee                                                  | Hyeongjun Park    | 2:30 PM  | 0:15           | yes        | 2         |
| 19        | Tethers Unlimited        | AstroPorter                                                              | Nathan Britton    | 2:45 PM  | 0:15           | yes        | 2         |
| 20        | PRISMS                   | Princeton International School of Mathematics and Science                | Gregory Herman    | 3:00 PM  | 0:15           | yes        | 2         |
| 22        | 2 NASA Ames              | Wrapup, Action Items                                                     | Jose Benavides    | 3:15 PM  | 0:15           |            | ]         |
| 23        | 3 Stanford               | Lab Tour                                                                 | Marco Pavone      | 3:30 PM  | 0:30           |            |           |
|           |                          | Depart                                                                   |                   | 4:00 PM  | 0:00           |            | 4         |
|           |                          |                                                                          |                   |          |                | Total:     | 37        |



# **SPHERES Community**

### **SPHERES Working Group (SWG) Quarterly meeting**

- Membership includes MIT, FIT, AFS, DARPA, CASIS, Airbus, and NASA (HQ, KSC, JSC, MSFC, and ARC)
- Face-to-Face, twice a year
- Next will be scheduled in May 2018, location TBD

### Purpose:

- Information sharing across the SPHERES/Astrobee community
- Astrobee Facility shares
  - National Lab Facility availability
  - ✓ Status of resources (batteries, CO2 tanks, etc.),
  - ✓ Overall Calendar (scheduled Test Sessions, upmass/return), and
  - ✓ Updates on "new" PD, Investigations, and ISS infrastructure.
- Provide the SPHERES/Astrobee community (PD, investigators, etc.) with up-todate information to determine opportunities to use the NL Facility
- Discuss proposed changes/updates to Astrobee Nat Lab which may be required to support a specific activity or research.
- Discuss specific support requests made to the ISS Office



### The SPHERES/Astrobee Facility success as a platform for technology development and fundamental research depends on the success of it's users

- What's your current goal with Astrobee? (Lab Demo? ISS Demo?)
- Plan for getting there
- Are there some make-sense partnerships with other groups here?







# **Guest Science Program (GSP)**

#### □ What's available from the Astrobee Facility?

- Astrobee Robotics Software Simulation
- Ground Hardware: Qty 3 & "Flat-Sats"
- Labs: Granite & MGTF
- Documentation and Training
- Proposal Support
- ISS Payload Partner
- ☐ How can I use Astrobee and what does it take?
  - Guest Scientist Guide & Mechanical Payload ICD
  - New Hardware or "just" Software?
  - **Ground Demonstration or ISS Operation?**
- □ We want to hear from you!
  - Approximate Scheduling
- □ Information found on website

https://www.nasa.gov/astrobee



### What's next ...

- □ Next ZR competition is under way
- Continuing Vertigo Smooth Navigation research
- Continuing Tether-Slosh
- □ Continuing SPHERES-ReSWARM
- □ Continue work transitioning to Astrobee
  - Goal: Fully operational in 2019
- □ Astrobee and Int-Ball joint-activity discussions continuing
- □ Interns (Matt, Ruben, Cole, Vivek, Peter, Bryce)
  - Zero Robotics
  - □ GSP Software
  - Astrobee Build
  - Air Sampling on ISS





## **Guest Scientists**

#### Replacing SPHERES, it is anticipated that Astrobee will carry on as the most highly utilized payload on the ISS

### 40+ projects have expressed interest in using Astrobee

 Topics range from 0g fuel tank slosh to propellantless flight via acrobatic arm motion

#### 7 Projects actively working towards ISS payloads

- MIT/Zero Robotics
- Naval Postgraduate School
- Astrobotic/Bosch
- Stanford
- REALM
- JAXA joint activity
- [Port Tester]



Astrobee guest scientist institutions in the US

### Ground Studies

- FIT/RINGS
- Tethers Unlimited
- NMSU



# **Guest Science Concepts**



Prototype Astrobee arm based on Canfield joint, enabling new motions (Tethers)



Gripper concept based on gecko-like adhesives (Stanford)



Adapting the RINGS magnetic propulsion payload to Astrobee (FIT)



Improving gripper dexterity without increasing actuator count (Columbia)



Arm grasping controller developed using Astrobee open source simulator (NPS)

#### and many more...



# **SPHERES Engineering**



# **Ground Lab Status**

• Granite Lab: Online





Micro Gravity Test Facility (MGTF) Lab

• Flight Lab: Online





• Engineering Evaluation Lab (EEL): Available upon request



# Hardware Fidelity (Astrobee)

| Name       | Mechanical<br>Fidelity | Electrical<br>Fidelity | Software<br>Fidelity | Sensor Fidelity |
|------------|------------------------|------------------------|----------------------|-----------------|
| P4C        | Low                    | Low                    | Low                  | High            |
| P4E        | Med                    | Med-High               | High                 | High            |
| Flat Sat A | Low                    | High                   | High                 | Low/None        |
| Cert       | High                   | High                   | High                 | High            |
| Flight 1   | High                   | High                   | High                 | High            |







# Hardware Status (Astrobee)

| Name       | Status      | Plans                                         |
|------------|-------------|-----------------------------------------------|
| P4C        | End-Of-Life | Available in MGTF but unsupported             |
| P4E        | Operational | Dev. Testing in Granite until Cert, then MGTF |
| Flat Sat A | Operational | In use by FSW team                            |
| Cert       | Complete    | Debugging, then verification testing          |
| Flight 1   | In-Work     | Complete by 08/17, then verification testing  |







# **Port Tester**

**Andres Mora** 

**S/A Facilities** 



- Facilitates diagnostics of Astrobee's internal USB ports
- Tests safe electrical current operational limits
- 1U design to fit within
  Astrobee's payload bays
- Includes both hardware and software development:
  - Structure, electronics, supports, interfaces
  - Port tester's human and Astrobee interfacing programs and HLP Guest Science APK
- Connection with Astrobee through HLP Guest Science APK





# Composed of two main boards:

- Face board:
  - ✓ 140 mm x 75 mm
  - handles interaction with astronaut (includes buttons, LCD, switch, and USB port)
- Base board:
  - ✓ 85 mm x 55mm
  - handles interaction between payload and Astrobee



#### Face board prototype 1



Base board prototype 1



# Future Updates to Guest Science Guide

**Ruben Garcia & Andres Mora** 

S/A Facilities



- Overview of the contents of the GS Guide document.
- Once SPHERES transition to Astrobee, a new GS Framework will be in place.
- □ The GS Guide is a compilation of concepts and guidelines to write GS applications in Astrobee.
- **This document will contain:** 
  - Fundamentals about Astrobee GS Development.
  - A step by step tutorial to build GS applications.







### ☐ High-level flow diagram of a GS application development





# SPHERES & Astrobee Operations



### **Operations: Functions**

### **Ensure Facility Readiness for ISS Test Sessions**

- > All crew training now via Onboard Training (OBT) both English & Russian
- Crew procedure updates
- Coordinate with ISS Lead Increment Scientist and POIC Cadre
- Flight products on orbit (test plan, .spf, on-board training and review, etc.)
- Consumables (CO2 Tanks and Batteries) refurbishment and resupply
- Support SPHERES directory/file maintenance

### **Real-Time ISS Test Session support**

- Coordinate w/SPHERES investigators product development and delivery
- Support crew and POIC cadre real-time
- Conduct/coordinate crew conferences as needed
- Test session data and video management

### **Public Relations**

Maintain website, work with ARC PAO office to publish material on site



### **Operations: Functions**

### **Increment Planning**

- > PTP and 2-pager development, and update & support and submittal
- Timeline planning model review and update

### **Safety and Verification Assessments**

- Integrated Safety & Verification Assessments for all SPHERES payloads
- Safety & Verification assessments for Battery/Tank launches/returns
- Complete Certification of Flight Readiness for ground systems and on-orbit hardware and operations products
- Conduct ISS Requirements Change Assessments to SPHERES Facility

### **Astrobee Ground Ops Development**

- > On orbit Activity planning and development
- Ground Operations Readiness Test planning and development
- OBT (Onboard Training) videos being initiated



- Test Sessions
  - SmoothNav Science 2
  - Tether Slosh Science 2
  - > SPHERES Rechargeable Battery Charge Activity
- April 2, 2018 April 4, 2018 April 24, 2018
- > Awakened from deep sleep after ~1.5 years and charged for the first time
- > Some issues with getting the batteries to mate with the charging adapters but solved
- > These batteries will be used for the first time in SPHERES Satellites June 28, 2018.
- Updated flight procedures for Tether Slosh, SmoothNav, and updated all procedures to reflect the rechargeable batteries
- Attended the Payload Operations Integration Working Group (POIWG) April 24-26 MSFC
  - Astrobee Splinter Meeting Initial one-pager planning document presented
- Established initial Astrobee Operations Readiness Test (ORT) plan and timeline for all the Commissioning Activities



### Increments 55/56 & 57/58

| Increments 55/56 (March 2018 – October 2018) |                         |  |  |
|----------------------------------------------|-------------------------|--|--|
| SPHERES Maintenance                          | June 28                 |  |  |
| Tether Slosh Science 3                       | July 18                 |  |  |
| Zero Robotics High School Units Test         | late July 2018 date TBD |  |  |
| Zero Robotics High School Dry Run            | August 8                |  |  |
| Zero Robotics High School Finals             | August 10               |  |  |
| ReSwarm Science 1                            | August ?? TBD           |  |  |
| SmoothNav Science 3                          | September ?? TBD        |  |  |
| Increments 57/58 (October 2018 – April 2019) |                         |  |  |
| Tether Slosh Science 4                       | TBD                     |  |  |
| SmoothNav Science 4                          | TBD                     |  |  |
| ReSwarm Science 2                            | TBD                     |  |  |
| Zero Robotics High School Units Test         | Oct 29                  |  |  |
| Zero Robotics High School Dry Run            | Jan 8, 2019             |  |  |
| Zero Robotics High School Finals             | Jan 11, 2019            |  |  |
| Slosh Coating (4X ? Sessions)                | TBD                     |  |  |
| ASTROBEE (10x+ sessions)                     | TBD                     |  |  |
|                                              |                         |  |  |



# **SPHERES Calendar**





### **Safety and Verification**

#### Safety

Completed and submitted:

- SPHERES Satellite Return (SpX-15) 6.30.18 Approved 6.1.18
- SPHERES CO2 Tanks (gray) Return (SpX-15) 5.2.18 Approved 5.3.18
- Smartphone Return (SpX-13) 1.11.2018 Approved 1.12.18

### Upcoming or in work

SPHERES Gray CO2 Tanks (empty) Return (TBD)



# **Consumables Status**

### **CO2** Tank Inventory

• 74 Tanks on orbit – should support approximately 22 test sessions

#### **Battery Pack Inventory**

- 54 Batteries on orbit should support approximately 8 test sessions
- 10 SPHERES Rechargeable Batteries arrived on station with OA-7 (Feb 2017)

#### **Consumables downmass**

- Return 14 empty gray tanks (SpX-15)
- Return empty gray tanks (SpX-16)



# **SPHERES on Social Media**



# Astrobee Update



### SPHERES/Astrobee Working Group June 19, 2018



### Astrobee Team

**Oleg Alexandrov** Katie Browne Maria Bualat Brian Coltin Earl Daley Neil Davies Lorenzo Fluckiger Terry Fong Jesse Fusco Ryan Goetz Yunkyung Kim Dongmeng Li John Love Nghia Mai

Mike McIntyre Don Morr Ted Morse **Estrellina Pacis** Inwon Park **Greg Paulson** Hugo Sanchez Trey Smith Ernie Smith Corey Snyder The SPHERES Team Andrew Symington Omar Talavera Vinh To

DW Wheeler Shang Wu Jongwoon Yoo Alumni Steve Battazzo Jeff Blair Jon Dewald Jeff Feller Ravi Gogna Hyunjung Kim Linda Kobayashi **Brian Koss** Alexandria Langford Dong-Hyun Lee Jason Lum Andy Martinez Blair Mclachlan Zack Moratto Robert Nakamura Youngwoo Park Cedric Priscal Chris Provencher Jay Torres Allison Zuniga



# Astrobee Equipment

- 3 free flyers, dock, spare ORUs on orbit
  - Honey (yellow)
  - Bumble (blue)
  - Queen (green)
- 3 free flyers, 2 docks (1 a flight spare), spares on ground
  - Melissa (pink)
  - B♯ (purple)
  - Killer (orange)





# **Research Scenario**



#### **Sequence of Events**

Prior to research activity, ground operator

- 1 loads experimental software, free flyer does self-diagnostics.
- 2 Free flyer undocks and moves to experimental module.
- 3 Astronaut attaches external hardware to free flyer.
- 4 Ground operator sets up individual tests, and (optionally) astronaut initializes tests.
- 5 Free flyer perches to wait while astronaut pauses for EPO Event.

Astronaut detaches hardware and then free flyer returns to dock.

Astrobee Working Group

6

![](_page_32_Picture_0.jpeg)

# Research Scenario Timelines

### •Low Intensity

![](_page_32_Figure_3.jpeg)

• High Intensity

![](_page_32_Figure_5.jpeg)

![](_page_33_Picture_0.jpeg)

# Contingencies

- Unexpected obstacle/crew
  - Stop and wait for instructions
- Low battery
  - Alert and autonomously return to dock
- •LOS
  - Continue nominal operations
  - Long duration WiFi drop: return to dock
- •H/W & S/W failures
  - Halt operations and disable propulsion, articulation and active sensing

![](_page_34_Picture_0.jpeg)

# Astrobee Status

- Astrobee hardware delivery has slipped
  - Addressing an electrical issue in the prop module
  - Dock to launch on Orbital-ATK 10 (November 17, 2018)
  - Honey and Bumble to launch on Space-X 17 (February 1, 2019)
  - Queen to launch on Orbital-ATK 11 (April 17, 2019)
- Nearly done with Cert Unit integration
  - All but prop module and final assembly of free flyer
- Flight Unit integration has begun
  - Completed hazcam and perchcam assemblies, and bumper assemblies and balanced impellers for 2 free flyers
  - Now concentrating on docking station integration
- Available to Guest Scientists:
  - Beta release of Flight Software/Simulator
  - Mechanical Payload ICD drawings
  - Initial draft of the Guest Science Guide

![](_page_35_Picture_0.jpeg)

### Astrobee Cert Unit Integration

![](_page_35_Picture_2.jpeg)

**Docking Station** 

![](_page_35_Picture_4.jpeg)

Perching Arm

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

![](_page_36_Picture_0.jpeg)

# Astrobee Flight Unit Integration

![](_page_36_Picture_2.jpeg)

#### **Core Frames**

SPHERES/Astrobee Working Group