
1

NASA Platform for Autonomous Systems (NPAS)

Fernando Figueroa,1 Lauren Underwood2

NASA Stennis Space Center, Stennis Space Center, MS 39529, USA

Mark G. Walker,3 Jonathan Morris4

D2K Technologies, Ocean Side, CA 92056, USA

NASA Platform for Autonomous Systems (NPAS) is a disruptive software platform and

processes being developed by the NASA Stennis Space Center (SSC) Autonomous Systems

Laboratory (ASL). Autonomous operations are critical for the success, safety and crew

survival of NASA deep space missions beyond low Earth orbit, including the Gateway, and

for the future of cost-effective ground mission operations. NPAS represents the embodiment

of an innovative paradigm for “thinking” autonomy in contrast to brute-force autonomy.

NPAS uniquely addresses the requirements and integrates the primary functionalities for

autonomous operations, in one platform that includes: (1) Integrated System Health

Management (ISHM); (2) autonomy strategies, guided by system health and concepts of

operations; (3) domain objects (system elements) and infrastructure to create complete

application domain knowledge models (4) infrastructure to create, schedule, and execute

mission plans; (5) infrastructure to develop user interfaces for comprehensive awareness; and

(6) infrastructure to integrate distributed autonomous applications across networks. NPAS is

a single platform that can be used to make any system operate with any desirable degree of

autonomy, as well as provide comprehensive system awareness to operators and users.

I. Nomenclature

NASA = National Aeronautics and Space Administration

SSC = Stennis Space Center

JSC = Johnson Space Center

NPAS = NASA Platform for Autonomous Systems

iPAS = integrated Power Avionics Software

ISHM = Integrated System Health Management

BFA = Brute Force Autonomy

TA = Thinking Autonomy

DIaK = Data, Information, and Knowledge

II. Introduction

NASA needs autonomous operation software capabilities for safety critical applications that can be affordably and

timely qualified and deployed. Autonomy has historically been implemented as “brute-force autonomy (BFA),” as

opposed to “thinking autonomy (TA).” BFA consists of considering all possible cases for autonomous decisions and

applying those specific strategies to generate solutions offline. Cases and solutions are then incorporated in the

processor for implementing autonomy, and the processor simply chooses the decisions which correspond to each

prescribed case. An interpretation of this methodology suggests that the “thinking” is done offline by experts. This

method could never truly be comprehensive, since there will inevitably be cases that are not apparent, imagined and/or

just missed, thereby limiting the fundamental degree of autonomy. Therefore, brute-force autonomy implementations

1 Lead Autonomous Systems and Operations, Test Technology Branch, AIAA Associate Fellow.
2 Project Manager, Autonomous Systems Lab, Test Technology Branch.
3 V.P. Engineering.
4 Senior Software Engineer.

2

are application instance specific (hard-coded), and hence are by their own nature exorbitantly expensive to develop,

deploy, maintain, and evolve for anything beyond the specific application for which the code was designed. For these

reasons, BFA has limited capability and reusability – critical requirements for developing affordable autonomous

systems - and therefore not a viable solution for the sustained evolution of autonomy. “Thinking Autonomy,” in

contrast, implies that analysis and reasoning are evoked by the system in real time in order to derive information,

knowledge, and optimal solutions. In the case of NPAS, the processor for autonomy is able to reason based on concepts

and first principles, and applies these principles in real-time to models that support strategies for Integrated System

Health Management (ISHM) and autonomous operations.

The future of “true” autonomous systems requires independent thinking and reasoning so that the need for persistent

updates is eliminated, unforeseen human oversight is prevented, passive monitoring of the progress of a task when

desirable is enabled, and awareness for rapid comprehension and action by operators is made possible. This represents

a paradigm shift in the way NASA must develop autonomous operations software for future space and ground systems.

Stennis Space Center (SSC) has developed a software platform that enables implementation of “Thinking” Autonomy

- NPAS.

This paper describes autonomy capabilities enabled by using NPAS for a broad range of ground and space systems. It

also describes NPAS’ software architecture and initial implementations. Also discussed is a path-to-flight for NPAS

as part of current efforts in order to support Gateway and other NASA activities in the near and mid-term, and to

achieve long term exploration objectives.

III. NPAS Description

NASA Platform for Autonomous Systems (NPAS), is a software platform developed by NASA Stennis Space Center

(SSC) and its evolution is continuously being advanced at the Autonomous Systems Laboratory (ASL). NPAS is used

to make systems operate with any desirable degree of autonomy and provides comprehensive health and operational

awareness to operators and users, with the embedded capability to evolve systematically. NPAS uniquely extends the

paradigm of model-based systems engineering (MBSE) [1] beyond static models, into live models for real-time

“thinking” autonomous operations that can be rapidly and affordably implemented and systematically advanced

Autonomous operations are critical technologies required for the success, safety and crew survival of NASA deep

space missions beyond low Earth orbit, including Gateway, and for the future of cost-effective ground mission

operations. NPAS is an innovative software platform coupled with engineering processes that address NASA’s

autonomy needs. NPAS uniquely integrates six primary functionalities for autonomous operations including: (1)

Integrated System Health Management (ISHM); (2) autonomy strategies, guided by system health and concepts of

operations; (3) domain objects (system elements) and infrastructure to create complete application domain knowledge

models (4) infrastructure to create, schedule, and execute mission plans; (5) infrastructure to develop user interfaces

for comprehensive awareness; and (6) infrastructure to integrate distributed autonomous applications across networks.

IV. NPAS Functional Architecture

The NPAS Functional Architecture is shown in Figure 1. This consists of 4 reusable modules (white background) that

are used to create all the elements required to make any system operate with any desirable degree of autonomy: (1)

Tools to create application knowledge model, (2) ISHM Strategies, (3) Autonomy Strategies, and (4) Tools to create

mission operations. These modules are used to generate the data, knowledge, and information specific to an application

that will operate autonomously: (1) NPAS System Application Knowledge Domain Model, (2) Sensor and Component

Health, (3) Autonomous Mission Plans, Schedule, and Execution, (4) Graphical User Interfaces.

A. Tools to Create Application Knowledge Model (AKM)

NPAS provides the infrastructure and tools to create the AKM. The AKM is a detailed model of the application that

is being modeled for autonomy, and includes complete data, information, and knowledge (DIaK) that describe a

system. The AKM encompasses all the elements that may be needed for an application to operate autonomously,

beginning with detailed schematics describing topology and functionality. A good analogy for an AKM are systems

models currently used in the practice of Model-Based Systems Engineering (MBSE), whereby models are created

using the SysML [2] standard and language. Figure 2 describes how an NPAS model encompass SysML elements.

3

All categories of SysML models are encompassed by NPAS AKM’s; in addition, AKM’s include elements for ISHM

(i.e. anomaly detection, diagnostics, prognosis, FMEA); and elements for autonomy (i.e. strategies to resolve issues

that arise in the execution of a mission - plan creation, scheduling, execution). The AKM is a “live” model that is used

in the operation of the system. It is the “Truth” model that encapsulates all data, information, and knowledge that

describe the system and all aspects of the application’s life cycle (design, operation, maintenance). Some attributes of

elements of the application (e.g. health condition, or usage information) are updated functionally by the module

“ISHM Strategies,” and conversely this module uses the AKM to apply strategies that result in determination of

“Sensor and Component Health.”

The module “Autonomy Strategies” utilizes the AKM to make decisions about what strategies can be applied when

unexpected events occur that risk the mission objectives. The module “Tools to create mission operations” utilizes the

AKM for creation, scheduling, and execution of plans.

Figure 1. NPAS Software Architecture

4

Figure 2. NPAS Application Knowledge Model encompasses all elements of SysML models and incorporates

elements for Autonomy and ISHM

B. ISHM Strategies

The ISHM module encompasses strategies that are foundational and generic (i.e. reusable). The strategies elicit models

that describe how systems function nominally, as well as when anomalies are present. Strategies address anomaly

detection, diagnostics, and prognostics. The “ISHM Strategies” module uses the AKM to examine the topology of the

application and its configuration in real time; and determines which models should be applied for analysis leading to

anomaly detection and/or prediction. At any given time, multiple models analyzing one process from various

perspectives may be active. The event occurrences that result from application of the models determine the state (i.e.

true, false, or suspect) of nodes on event cause-effect trees. The event cause-effect trees (ECTs) are substantively

generic (reusable), since they are created from FMEA analysis of elements and subsystems according to processes

established by practice and standards [3]. For example, ECTs embody generic FMEA for valves, or batteries; while

simultaneously considering that these elements may comprise a commodity distribution flow process, such as fluid

flow from a source to a sink. The outcome of ECT resolutions are assessments of sensor and component health

(“Sensor and Component Health” block in Figure 3). This information, sensor and component health, is in turn used

by both, the “ISHM Strategies” and the “Autonomy Strategies” modules.

ISHM is a subject with a substantial body of publications. Generally, anomaly detection is addressed separate from

diagnostics or prognostics. An example of a tool to implement anomaly detection using state space models is

Livingstone, which was used in NASA’s Remote Agent experiment [4]. Livingstone has been extended to address

other modeling paradigms resulting in the tool HyDE (Hybrid Diagnostic Engine) [5]. These tools use only partial

descriptions of the application system, sufficient to satisfy state transition analysis (Livingstone) or sets of parameters

from a perspective of creating simulations from specific physics models (HyDE). In contrast ISHM and autonomy

capabilities in NPAS make use of a comprehensive knowledge model of the application that also encompass generic

strategies (for analysis, decision making, planning, concepts of operations, policy, functional and topological

relationships among members within an application and members of other applications). In addition, all functionalities

of ISHM (anomaly detection, diagnostics, prognostics, awareness) are inherently integrated. References of health

management implementations include Health and Usage Monitoring Systems – HUMS [6] and the Advanced Health

Management System for the Space Shuttle Engine [7]. HUMS is a commercial product, but a significant portion of

the analysis and decision making is manual, off line. The Space Shuttle application was active in flights, but it was

simple in the sense that it used limits of operation derived from experimental flight data to monitor if parameters were

in the acceptable range.

5

References [8-12] provide additional insight into development and implementations that have evolved into NPAS.

C. Autonomy Strategies

Autonomy strategies are used to address unplanned events that interfere with plans implemented to carry out an

activity incorporated in a mission. Note, taxonomy associated with missions and activities will be discussed in section

describing the Tools to Create Mission Operations. Autonomy strategies address properties such as self-resilience and

self-robustness. Autonomous systems must exploit various attributes of the AKM such as redundancy, and utilize

persistence qualities such as “repeat-action”; so that an activity may proceed, or alternatively, be replaced by another

activity that enables continuation of the mission.

The reasoning behind a “repeat-action” is the assumption that the first time the action was commanded, it was not

successful because a temporary anomaly occurred that may no longer exist. For instance, perhaps a dust particle

interfered to impede an electrical contact, and it was dislodged in the first attempt. So, for any command, there is the

option of applying the “repeat-action” strategy, however, there are considerations (constraints) that must be met before

applying the strategy. For example, some actions may inhibit the use of this strategy, so there is also the concept of

inhibiting/de-inhibiting strategies associated with some actions. This “inhibit” assignment is a generic constraint

strategy that may be defined by qualifying the actions and corresponding inhibit settings. Planners may inhibit use of

the “repeat-action” strategy based on constraint reasoning.

In order to define autonomy strategies, concepts such as redundancy, “repeat-action”, inhibit, and others are

understood by NPAS, so that the appropriate strategies may be applied to carry out a mission. The ability to extend

the glossary of autonomy strategies concepts is also provided.

Autonomy strategies have been generally employed in specific implementations, and most likely in response to a

circumstance that was not anticipated. For example, a rover that is stuck with its wheels slipping may repeat a back-

and-forth motion in order to swing out from the slippery area. Currently this strategy is planned in detail once the

rover is in such situation. NPAS enables a high abstraction level that is based in the “repeat-action” strategy, and

applies to a broad range of circumstances that can be resolved with this strategy.

Reference [13] is a detailed report describing the state of autonomous operations capabilities, and it basically indicates

that at the time of the report (2002), perhaps only one implementation could qualify as having minimal autonomy, the

Remote Agent Experiment [4]. Not much progress in “thinking” autonomy has been made since then. Some of the

advances in autonomous systems and operations leading to NPAS are described in references [14-17].

D. Tools to Create Mission Operations

An autonomous system defines missions based on a schedule of activities that are achieved by executing plans. NPAS

includes tools to create plans that encompass an activity, schedule activities (encompassing plans), and execute

activities. For any application system (e.g. an autonomous power subsystem), sets of activities may be created as a

collection of plans. An example activity might be “nominal operation”, which in the case of an autonomous power

subsystem could refer to a set of plans for autonomous management of power flow to critical spacecraft loads by a

spacecraft Vehicle Manager. Accordingly, the power subsystem plans must control the power sources and distribution

switches to achieve this mission autonomously, despite any anomalies that the power subsystem may have at that

particular point in time. And if the autonomous power subsystem is unable to comply with the “nominal operation”

activity commanded by the Vehicle Manager, it must report this, and follow up with an ensuing conversation between

the Vehicle Manager and the autonomous power subsystem, and a solution that satisfies the overall mission objective

of the Vehicle Manager (i.e. keeping the spacecraft safe) should be provided.

V. NPAS Capabilities

NPAS integrates the following primary functionalities:

1. Integrated System Health Management (ISHM), that includes anomaly detection, diagnostics and

effects (FMEA), prognostics, and comprehensive awareness;

2. Autonomy, that encompasses strategies for autonomous behavior constrained by health and system

concepts of operations;

6

3. Infrastructure to rapidly develop and evolve knowledge models of applications.

4. Infrastructure to create, schedule, and execute mission plans.

5. Infrastructure to seamlessly integrate distributed NPAS autonomous applications across networks

6. Infrastructure to develop user interfaces that provide integrated awareness and optimal operator

access for a desired degree of autonomy.

NPAS encompasses an infrastructure to implement intelligent autonomy for a broad range of systems (Figure 3).

To date, this includes tools to create the AKM’s such as domain object libraries and knowledge for hydraulic,

mechanical, electrical, and computing systems; process and event management, health management, autonomy,

functional relationships, constraints, and concepts of operations. Specific capabilities are described below.

Figure 3. NPAS Capabilities

A. NPAS Failure Modes and Effects Analysis

FMEA is part of the NPAS ISHM Strategies, as it is used to implement diagnostics and model observable effects of

failure events. NPAS includes tools for modeling cause-effect trees based on available FMEA, capturing all constraints

and details needed for the analysis represented by each FMEA entry.

Figure 4 shows how FMEA is implemented in NPAS. The table shown corresponds to MIL-STD-1629A (Notice 2)

Military Standard: Procedures: Procedures for performing a Failure Mode, Effects, and criticality Analysis. In NPAS

FMEA is implemented graphically as cause-effect trees with nodes representing events (failure or anomaly). Any

number of trees can be created, each addressing a particular type of analysis related to anomalies on classes of sensors,

components, or subsystems. The cause-effect trees on the left (Figure 4) depict a “Leak” event occurring on any “is2-

flow-subsystem” (a “class” of subsystem that is isolated by closed valves, stops, etc., where commodity in the

subsystem is not expected to leave). Root Causes include (1) any of the elements encompassing the subsystem leak

(“Leak” on any “is2-process-equipment” that is a subcomponent of an “is2-flow-subsystem” where a Leak has

occurred), or (2) the valves isolating the subsystem leak (“Leak” through any “is2-valve” that is “an-isolation-valve-

of” an “is2-flow-subsystem” where a “Leak” has occurred). Note the relationship assignment to the arrow indicating

that the cause-effect relationship involves encompassing member elements of a subsystem (the isolated subsystem).

7

As NPAS navigates and understands the AKM (learns its physical and functional topology), relationships like this

(membership in a subsystem) are automatically discovered. An immediate consequence of a “Leak” event is that an

“Abnormally Changing Pressure” event occurs in the isolated subsystem, and a consequence of that event is that an

“Abnormally Changing Pressure” event occurs on any pressure-sensor that the isolated system encompasses. Also,

note that sets of trees may be connected virtually by re-use of an event node from one tree on another. That is the case

of the event Leak that occurs on an “is2-flow-subsystem” (isolated subsystem) shown on the top tree of the left of the

figure (figure xx). The icon shows a blue arrow that indicates that it is an event that was defined previously in another

tree. Using this capability one can link any number of trees to create comprehensive cause-effect analysis for complex

systems. Note, that events correspond to classes of objects that encompass the AKM. This enables inherent re-usability

within an implementation and in new implementations.

Figure 4. NPAS cause-effect trees for FMEA implementation.

B. NPAS Creation of Operational Plans for Activities

Systems customarily have operational modes that provide context to activities that must be carried out. For example,

an operational mode (OpMod) of a space habitat may be “Un-crewed.” In this mode, the habitat will carry out multiple

activities according to a concept of operations (ConOps) for “Un-crewed” space habitats. NPAS has been used to

demonstrate a hierarchical distributed architecture for an autonomous systems operation integration activity at the

Integrated Power Avionics Software (iPAS) laboratory, located at NASA Johnson Space Center. Figure 5 represents

the hierarchy, with the Vehicle Manager at the highest level, denoting the Vehicle Manager’s responsibility for

managing the entire system (for example a space habitat).

Hierarchical distributed autonomy architecture means that each subsystem of the habitat will autonomously carry out

its own activities, the whole of which encompass an OpMod of the habitat.

An activity may be considered as a collection of plans defined by operational sequences. Plans may be directly

executed and/or be triggered by other plans that are running (e.g. an activity of the Vehicle Manager that is running a

plan for “Un-crewed” nominal power operations, may trigger a plan for “Un-crewed” off-nominal operations

whenever the power system reports a failure and corresponding diminished power availability).

8

Figure 5. Hierarchical Distributed Autonomy Architecture

NPAS also provides separate user interfaces for creating and running sequences. Figure 6 shows an example of the

sequence creation user interface. It has selection menus to create steps that carry out tasks (e.g. opening of a valve),

as well as menus for each step for defining conditions (constraints), time delays, and actions (open a valve, start a

pump, start another plan or sequence). An important quality of this user interface is that the menus update

automatically whenever changes occur in the application knowledge model (AKM). For example, if a new sensor is

included, this will appear as an option to define conditions related to measurements by that sensor. This is because the

AKM incorporates, in real time, everything that relates to the new sensor in the knowledge model.

NPAS also has a user interface that provides full situational awareness associated with sequence execution. Figure 7

shows the sequence steps that have been executed on the top portion of the window, the step currently being executed

in the middle, and the upcoming steps at the bottom.

Figure 6. NPAS sequence creation user interface.

9

Figure 7. NPAS sequence execution user interface.

C. NPAS Redline Implementation

Redlines are a standard approach for providing awareness regarding sensors measurements or events that are deemed

critical; and when evoked, trigger actions to be carried out in order to contain adverse consequences. In NPAS, redlines

may be activated, de-activated, inhibited, and de-inhibited programmatically (e.g. within a sequence step of a plan).

Multiple redline definitions may be associated with a sensor measurement, or a virtual sensor that may represent

occurrence of an event. Figure 8 shows the redline creation user interface.

Similar to the user interface used to create operational sequences, the menu used to create redlines is automatically

updated when sensors or events (events may be represented by virtual sensors) are updated (added or deleted) in the

AKM.

Figure 8. NPAS Redline creation user interface.

10

D. NPAS Physics Modeling for real-time Reasoning and Decision Making

The NPAS paradigm for employing physics models for reasoning and decision making is to use any and all available

models of sensors, components, and subsystems whenever enough information is available to execute the models.

NPAS is able to navigate through any system and understand its composition, and its static and dynamic topology.

With this understanding, concepts such as connectivity and readiness for flow of a commodity; and the application of

process models for that context (e.g. analysis of flow in a flow subsystem) are enabled with NPAS. Therefore, in

contrast with the classic approach of developing physics (or other) models that encompass entire systems (application),

NPAS enables creation of piece-wise models and “model packages” that correspond to individual elements (e.g.

sensors, valves, pumps, pipes, batteries) and subsystems (collection of elements that comprise an isolated subsystem

or a flow subsystem). A detailed description of how NPAS enables incorporation of physics and other models is

provided in [17]; the uniqueness is that NPAS is able to understand concepts, define/recognize the boundaries of a

subsystem/component/sensor for analysis, assert in real-time a process that is taking place, and apply model packages

that are suitable. In this capacity, NPAS is able to “think”, to reason, and make decisions.

As an example, Figure 9 shows how pump model packages (or more generically, model packages for components that

provide a “pumping” effect as part of a commodity management system) are defined and used. For every instance of

a rotary pump, models that calculate operational quantities for reasoning such as efficiency are executed according to

a schedule and/or triggered by events. A fundamental model relating pressure across the pump, flow rate, pump speed,

pump specifications, and commodity is also applied for consistency checking, or to predict the value of a parameter

that may not be available. A “Failed” consistency check results in a generic event for rotary pumps “model-

consistency-failure” becoming “true.” This type of event is part of one or more cause effect trees that link failure

modes of pumps and effects across the systems encompassing the pumps.

Figure 9. NPAS physics/engineering modeling

11

E. NPAS and AI

NPAS includes model-based reasoning that is founded by physics models (or other kinds of models) and processes

that resemble how experts (e.g. engineers, scientists) apply models and strategies to reason and make decisions. This

approach is inspired by work on qualitative modeling done by the AI community over the past several decades [insert

reference here]. Figure 10 represents the contrast among AI technologies/approaches including neural networks, brute-

force, and the NPAS methodology.

Figure 10. NPAS physics/engineering models and reasoning.

F. Electronic Data Sheets

NPAS also supports inclusion of IEEE 1451 Standard Transducer Electronic Data Sheets (TEDS). In addition,

extensions to the standard have been developed to define Component Electronic Data Sheets (CEDS) and Health

Electronic Data Sheets (HEDS). This competency enables interoperability and the creation of domain languages and

capability languages that are fundamental to implement “thinking” autonomy that is evolutionary and sustainable.

Many industrial providers of transducers currently support TEDS.

G. Network capabilities

NPAS includes infrastructure for network communications such as an OPC Bridge, to communicate with industrial

systems, and in turn, enables them for autonomous operations. Also included is a JAVA Bridge to enable sophisticated

interactions with other applications across a network, an Oracle Bridge to interact with Oracle databases, and an ODBC

Bridge to interact with standard databases. At NASA, bridges that support communications protocols such as Space

Packet Protocol (SPP) and Software Bus Network (SBN) protocol have been developed [insert reference here]. Using

the SBN Bridge, NPAS applications can interact with other applications in a network that support the SBN protocol

using the subscribe and broadcast modalities. NPAS also includes infrastructure to develop custom protocols, for

interaction with a broad range of other applications; for example, bridges to run Matlab applications, or executable

files. This enables incorporation of external applications, and doesn’t require re-coding in the G2 language (NPAS is

a platform built in the G2 software environment) [18]. For example, Figure 11 shows an architecture that has been

used to implement autonomous operations in industrial systems that use Programmable Logic Controllers (PLC’s).

12

H. Distributed Autonomy Capabilities

NPAS is built using the G2 software environment, and multiple NPAS applications can run in one processor, or can

be distributed among processor cores, or among processors physically distributed across a network. Integration of

multiple NPAS applications that may encompass a distributed autonomous system of systems can be accomplished

by using the network capabilities described above (in section G.). In addition, G2 includes a native G2-to-G2

communication capability that enables NPAS applications to access and make reference to objects and object attributes

defined in another NPAS. Integration is handled using the subscribe and broadcast modalities, whereby a procedure

can be alerted by an attribute of an object and execute when the attribute experiences a change in value. In this manner,

procedural code doesn’t need to have while-loops waiting for a change to occur. Figure 5 shows a Hierarchical

Distributed Autonomy Architecture where the vehicle manager and each subsystem are expected to be independent

NPAS autonomous applications. This architecture application was implemented as a pilot validation demonstration

project that included development of an NPAS Vehicle Manager, and an NPAS Power, and an NPAS Avionics.

Figure 11. Architecture for NPAS autonomy implementation in industrial systems.

VI. Implementations of Autonomous Systems using NPAS

Autonomous operational capability implemented using NPAS has been demonstrated successfully for 1) Autonomous

Propellant Loading from a storage tank to a flight tank at the Cryogenic Test Bed Laboratory (KSC); 2) a simulated

(physics) implementation/demonstration of simultaneous multi-system autonomous propellant loading operations at

KSC’s UPSS (Universal Propellant Servicing System); 3) an demonstration that used EFT-1 telemetry data from Orion

to implement an integrated system monitoring, anomaly detection, and FMEA capability for a subset of Orion’s EFT-

1 systems; 4) a demonstration for implementing a deep space autonomous habitat exhibiting hierarchical distributed

autonomy encompassing 3 autonomous systems (vehicle manager, power, and avionics), in JSC’s A & S iPAS Lab

[Figure 12]; and 5) is currently being infused for autonomous operations at the SSC High Pressure Gas Facility [Figure

13] - a critical piece of test infrastructure used to support Space Launch System (SLS), Department of Defense, DoD,

and commercial propulsion testing for SLS. This infusion includes certification of NPAS as Class C Safety Critical

for autonomous operations. All implementations exemplify the benefit of using NPAS for rapid autonomy

development and have demonstrated associated significant cost savings.

13

Figure 12. NPAS Vehicle Manager user interface for a pilot autonomous space habitat implementation.

Figure 13. Life schematics as part of the domain knowledge model of SSC's High Pressure Gas Facility.

 NPAS Path-to-Flight

Current NPAS efforts are focused on benchmarking performance and advancing NPAS operation on flight-qualified

hardware/software platform PowerPC (SP0-S) running in VxWorks environment, and on ARM-A53 running in Linux

environment to create a design guideline that supports other NPAS-based architectures for future missions (e.g.,

Gateway, rovers, In-Situ Resource Utilization ISRU, and habitat). These NPAS capabilities will enable the advance

of a disruptive autonomous operations software capability for use in safety critical applications that can be affordably

and timely qualified and deployed.

14

VII. Conclusions and Recommendations

NPAS is a platform that provides “thinking” autonomous operations capability and leverages a COTS product to

address NASA’s autonomous capability needs. A comparison of the differences between brute-force autonomy and

“thinking” autonomy is exemplified in Figure 14. Without the ability to implement “thinking” autonomy, the technical

and cost challenges to achieve the degrees of autonomy required by NASA for deep space exploration will be

insurmountable.

Figure 13. Brute-Force Autonomy VS "Thinking Autonomy."

NPAS is a single software platform that encompasses all functionality required to implement intelligent autonomous

operation, which are natively integrated, and includes generic re-usable strategies for ISHM and autonomy

applications (systems) infrastructure. NPAS provides the foundation to achieve autonomy that is anchored on a

comprehensive knowledge model of an application (system) that can evolve systematically as information and

knowledge is augmented, added, refined, as well as when other external applications that increase autonomy

functionality are incorporated.

VIII. Acknowledgements

This work was made possible by funds from NASA’s Advanced Exploration Systems (AES). The authors are thankful

to Duane Armstrong from NASA SSC, Test Technology Branch Chief, for his sustained support. The personnel from

D2K Technologies and Kim Wilkins from General Atomics have been involved in the development of NPAS, and in

a significant portion of the implementations described.

IX. References

[1] International Council on Systems Engineering, INCOSE (https://www.incose.org)

[2] SysML Open Source Project (https://sysml.org/)

[3] Mil Standard 1626A

[4] D.E. Bernard et al, “Design of the Remote Agent experiment for spacecraft autonomy,” 1988 IEEE

Aerospace Conference, March 28-28, Snowmass at Aspen, CO, USA.

https://www.incose.org/

15

[5] https://www.nasa.gov/ames-partnerships/technology/technology-opportunity-hybrid-diagnostic-engine-

hyde-for-fault-analysis.

[6] https://aerospace.honeywell.com/en/product-listing/health-and-usage-monitoring

[7] Davidson, M., and Stephens, J., “Advanced Health Management System for the Space Shuttle Main Engine,”

40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 11-14 July 2004

[8] Fernando Figueroa and Kevin Melcher, “Integrated System Health Management for Intelligent Systems,”

chapter in the book Advances in intelligent and Autonomous Aerospace Systems, AIAA Progress in

Astronautics and Aeronautics, Vol. 241, Editor: John Valasek, Professor and Director, Vehicle Systems &

Control Laboratory Aerospace Engineering Department Texas A&M University. 2012, pp. 173-200.

[9] F. Figueroa and J. Schmalzel, “Rocket Testing and Integrated System Health Management”, Chapter in the

book Condition Monitoring and Control for Intelligent Manufacturing (Eds. L. Wang and R. Gao), pp. 373-

392, Springer Series in Advanced Manufacturing, Springer Verlag, UK, 2006.

[10] Fernando Figueroa, Jon Morris, Mark Turowski, Richard Franzl, Mark Walker, Ravi Kapadia, and Meera

Venkatesh, “Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System

Health Management (ISHM) Approach,” MFPT: The Applied Systems Health Management Conference

2011, 10-12 May 2011, Virginia Beach, VA, USA.

[11] Fernando Figueroa and Kevin Melcher, “Integrated Systems Health Management for Intelligent Systems,”

AIAA Infotech@Aerospace, 29 - 31 Mar 2011, Hyatt Regency St. Louis at the Arch, St. Louis, Missouri.

[12] Fernando Figueroa, Randy Holland, John Schmalzel, Dan Duncavage, Rick Alena, Alan Crocker, “ISHM

Implementation for Constellation Systems,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference &

Exhibit, July 9-12, 2006, Sacramento Convention Center, Sacramento, CA.

[13] Ashley W. Stroupe et al, “Technology for Autonomous Space Systems,” CMU-RI-TR-00-02, The Robotics

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, September 2002.

[14] Fernando Figueroa, Mark Walker, Kim Wilkins, Jaime Toro-Medina, Gerald Stahl, Robert Johnson, Jared

Sass, Justin Youney, “Ground Operations Autonomous Control and Integrated Health Management,”

Commercial and Government Response Access to Space Technology Exchange, June 22-25, 2015,

Westfields Marriott Washington Dulles, chantilly, Virginia.

[15] Fernando Figueroa, Mark Walker, Kim Wilkins, Jaime Toro-Medina, Gerald Stahl, Robert Johnson, Jared

Sass, Justin Youney, “Ground Operations Autonomous Control and Integrated Health Management,”

Commercial and Government Response Access to Space Technology Exchange, June 22-25, 2015,

Westfields Marriott Washington Dulles, chantilly, Virginia

[16] Fernando Figueroa, “Implementations Using NASA’s Autonomous Operation Mission Development Suite

(AO-MDS),” G2 Users Group Conference, September 27-29, 2016, Gaylord Palms Resort and Convention

Center, Orlando, FL, USA.

[17] Fernando Figueroa and Mark Walker, “Integrated System Health Management (ISHM) and Autonomy,”

AIAA SciTech 2018, Gaylord Palms, Kissimmee, Florida, January 8 – 12, 2018.

[18] http://www.gensym.com/

