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Abstract

This paper reports on the formalization of a recent result by Crespo, et al., as found in the
references. The formalized result bounds the number of support constraints in a particular
type of optimization problem. The problem involves discovering an optimal member of a
family of sets that overlaps each member of a constraining collection of sets. The particular
case addressed here concerns optimizations in which the family of sets is nested. The primary
results were formalized in the interactive theorem prover PVS and support the claim that
a single support constraint exists in very general circumstances.
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1 Introduction

This paper reports on the formalization of a recent result by Crespo, et. al. [3,4] concerning
a particular type of optimization that has applications to interval predictor models. Such
models are useful in predicting the range of possible output given a body of observational
data consisting of input-ouput combinations, as described in [2] and [5]. Specifically, this
paper formalizes a proof a theorem in [3, 4] that bounds the number of constraints which
support a particular optimal solution.

Given m-dimensional euclidean space Rm, a structured family of subsets F from Rm,
a finite collection G of arbitrary subsets from Rm, and a function u : F → R, what is the
u-minimal element of F which intersects each member of G? The solution (where it exists)
is not computable in general, but may be approximated. This is precisely the problem
addressed when interval predictor models are optimized. Within this context, the elements
of G are the optimization constraints, and the function u is the objective function.

In this problem domain, the cardinality of G may be extremely large, requiring extensive
computation to obtain the solution (or a reasonable approximation). It is often the case
that a strict subset S ⊂ G leads to the same optimal solution. If S is a minimal such subset
– that is, any subset of S does not share the same optimum – then S is called a supporting
set and its members support constraints. On one hand, the existence of such a subset allows
us to simplify future computations by discarding all constraints but those in S. On the
other, the members of S are more likely to be outliers. Removing such outliers may yield
a more desirable interval predictor model, and the probability that future observations fall
within this new model is related to the number of constraints removed [1].

It would be useful then to have bounds on the cardinality of S. Here we present a
formalization of the theorem in [3, 4] stating bounds for arbitrary classes of constraints
when the admissible sets in F are nested. The particular problem was posed by Luis Crespo
and addressed in the context of his work in [3, 4]. This paper formalizes and extends those
results in the interactive theorem prover PVS [6]. The results of the formalization are then
used to support a general statement about the problem.

2 Problem

Suppose that a family of sets F is defined as the image of a function p : R→ P(Rm), where
P(Rm) is the powerset of Rm. Further, let the image of p – denoted p[R] – be nested with
the property that for any r, s ∈ R, if r ≤ s then p(r) ⊆ p(s). Suppose that u : F → R
respects the set inclusion ordering – that is, A ⊆ B implies that u(A) ≤ u(B). Due to the
nested nature of p in this case, minimality by set inclusion entails u-minimality. Because
of this, u-minimality can be disregarded and the problem can be posed as one seeking the
smallest member of p[R] by set inclusion.

Definition. We say that X ∈ p[R] satisfies a constraint G if X ∩ G is nonempty. We
abbreviate this with the predicate term TG(X). Further, we say that X ∈ p[R] satisfies a
collection of constraints G if, for all G ∈ G, X satisfies G. We likewise abbreviate this as
TG(X).

Definition. We say that X is a minimal p-set for G if TG(X) and, for all Y ∈ p[R], if
TG(Y ), then X ⊆ Y .

Definition. Similarly, we say that X is a solution for a set of constraints G if TG(X)
and, for all Y ∈ p[R], if TG(Y ), then X ⊆ Y .

These definitions can be easily modified for use in cases where u-minimality is the target.
This would only be a matter of replacing the subset condition X ⊆ Y in the above definitions
with the condition u(X) ≤ u(Y ). We can see that in the case of inclusion, minimal p-sets
and solutions are unique. This does not typically hold for u-minimality.
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Figure 1: A minimal set may not exist due to the nature of the family of sets.

Figure 2: A minimal set may not exist due to the nature of the constraint.

One question that must be addressed is whether a minimal set (with respect to any form
of minimality) actually exists for an arbitrary constraint or set of constraints. In general, the
answer to this is no, and a few simple counterexamples are provided for inclusion minimality.

Suppose F contains all circles centered at some fixed point x with radius > 1, and all
circles centered at x with radius ≤ 1/2. If we have, for example, a linear constraint with
a minimum distance to x between 1 and 1/2, then we will not have a minimal set which
satisfies the constraint. This is illustrated in figure 1.

Suppose that F contains all circles centered at the origin. Consider a constraint defined
by the polar equation r(θ) = 1 + 1

θ , for θ ∈ (0,∞). This constraint approaches, but never
obtains, the unit circle. So in this case the lack of a minimal p-set is not due to some
pathology of the family F , but due to the constraint. This is illustrated in figure 2.

To addresses the behavior in figure 2, this section will deal only with constraints which
form closed sets, which will be called closed constraints. A formalization of the solution
is presented under the assumption that, for all nonempty subsets G ⊂ Rm closed in the
standard topology, there exists a minimal p-set.

This condition may seem simple, but during formalization the consistency of the require-
ments on p are a concern. If there is some contradiction inherent within the requirements,
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then any statement predicated on these will be vacuously true. Thus, it is important to
justify the consistency of the above stated requirements on the problem by providing an
example that satisfies all of the requirements. The example is given in the justification
below.

Justification. Consider the function p̃ : R→ P(Rm) defined by p̃(r) = Rm for all r ∈ R.
We see that this satisfies the nested requirement since, for r ≤ s, p̃(r) = Rm ⊆ Rm = p̃(s).
It also trivially satisfies the condition on closed constraints since Rm is the minimal p̃-set
for any constraint.

Perhaps the most obvious nested p is one that produces a family of nested circles centered
at some point. By definition, this satisfies the nested condition on p. It may be observed
that any closed constraint in Rm will contain a point, perhaps not unique, which is closest to
the origin of the family of circles. Assuming otherwise, a sequence can be constructed within
the constraint which converges to a point outside of the constraint, giving a contradiction.
The proof of this is beyond the scope of the formalization. The distance to this closest point
is then the radius of the minimal radius circle of this family satisfying the constraint.

A key result in the case where p satisfies these conditions may now be stated. This was
proven within PVS.

Theorem. For any finite collection of closed constraints G, there exists G ∈ G such that
a minimal p-set XG for G is also a solution for G.

Proof. Let G = {Gi}i≤N be a finite collection of closed constraints. For each Gn, by the
conditions on p, there exists some p(rn) which is a minimal supporting p-set for Gn. The
set of real numbers {ri}i≤N is a finite and contains a maximum. Without loss of generality,
suppose rj ∈ {ri} is the maximum of the set.

Note that, for all i ≤ N , we have p(ri) ⊆ p(rj) since ri ≤ rj . Thus TG(p(rj)). Let
Y ∈ p[R] such that TG(Y ). This entails TGj

(Y ), but since p(rj) is a minimal p-set of Gj , we
know p(rj) ⊆ Y .

Therefore p(rj) is a solution for G.

With this result to perform the heavy lifting, a stronger statement can be made. This
was proven within PVS.

Theorem. For any finite collection of closed constraints G, there is a singleton subset
S ⊂ G such that the solution of S is the solution of G.

Proof. By the previous theorem, there is some Gj ∈ G for which a minimal p-set XG of G is
a solution of G. Since minimal sets and solutions are unique, it follows that XG is the only
solution of G.

Consider the singleton collection of constraints S = {Gj}. Since XG is the unique
minimal p-set satisfying Gj , it is apparent that XG is the solution of S. Therefore S and G
share the same solution.

This establishes |S| = 1 in this special case and subsumes the theorem Crespo, et al.,
state in [4] [3].

3 Formalization

The formally verified version of the previous section was developed within PVS [6]. The
above presentation parallels the formal definitions and proof with the exception of some
routine steps that would detract from communicating the essential details.
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Figure 3: A non-linear constraint intersecting its minimal at two points.

Of note, the formalization defines closed sets in terms of the taxi metric, where given
x, y ∈ Rm then the distance between the two points is calculated as

d(x, y) =
∑
i≤m

|xi − yi|.

Since this induces the standard topology on Rm, it was selected in order to simplify the
arithmetic anywhere it was needed. Since the p̃ chosen for the consistency proof did not rely
on the fact that the constraints were closed, the choice of metric proved to be unimportant.

Thus this same p̃ establishes the consistency of requiring p to produce a minimal set
for all constraints, calling into question the limitation of the problem statement to closed
constraints. Observe again from figure 2 that if we require a minimal set for all constraints,
then we are now excluding some of the most obvious families – such as nested circles – from
our consideration.

Within the original problem domain, the constraints are generated by an equation
M(x, p) = y, where p ∈ Rm, and a collection of observations of the form (x, y). For each
pair (xj , yj), the solution set of M(xj , p) = yj forms a constraint. In [4] [3], the authors
require that M be continuous with respect to p. As a result, as long as M is consistent with
the observations, the constraints imposed will be nonempty closed sets in Rm.

The requirement thatM is continuous in p (and incidentally, also in x) is an artifact of the
original problem [5]. These conditions ensure that M(x, P ) generates an interval predictor
model when P is a connected set. Since this formalization abstracted out these details, an
assumption of continuity would be meaningless. It was through study of counterexamples
such as those shown that the more general requirement of closed constraints was developed.

Another interesting observation regards the temptation to assume that a supporting
constraint in this case must have a singleton intersection with the solution. As a modification
to figure 2, consider a family F that obtains the dashed circle. The dashed circle is then the
minimal set satisfying the line, but it is obvious that the intersection is not a singleton set.
In figure 3 we see an example of a nonlinear constraint and its minimal p-set which have
two points in the intersection.

There are ways to exclude or include such examples using notions such as interior and
exterior, and requiring some form of continuity or continuous deformation of p. However,
doing so would drastically increase the complexity of the formalization. Fundamentally, the
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work in the previous section relies on the order properties of p[R], including the existence
of minimal p-sets. The requirement concerning closed constraints is sufficient for this, but
not strictly necessary.

The proofs do not rely on the assumption that the constraints are closed, but the fact
that, for some class of constraints – here the nonempty closed sets – there are minimal
satisfying elements in p[R]. Restricting finite constraint sets to contain only the nonempty
members of an arbitrary class of sets in Rm yields the same results. The entire development
was duplicated as a parameterized PVS theory that takes a positive integerm and a predicate
on sets in Rm to demonstrate this. This generalization was completely proven in PVS,
extending every result previously stated to arbitrary classes of (nonempty) constraints.

In this setting the onus is on the user to verify that the choice of class leads to meaningful
results. For instance, instantiating the theory with the predicate that always returns true is
equivalent to the previously mentioned situation wherein we require all nonempty subsets
to have a minimal in p[R]. At the other extreme, the predicate that always returns false
gives the empty class and everything is satisfied vacuously.

4 Results

It was first shown and verified that, for nested p[R] in which minimals existed for all closed
constraints, any finite collection of closed constraints had a singleton supporting set. Next
the extension replacing the class of closed constraints with an arbitrary class was verified.

Now consider an arbitrary p : R→ P(Rm) for which the image is a nested family of sets.
Define the predicate ϕ on X ⊆ Rm as follows,

ϕ(X) ≡

{
> X has minimal in p[R]

⊥ otherwise.

Let Φ = {X ⊆ Rm | ϕ(X)} and define a Φ-constraint as any nonempty member of Φ.
Based on the formal extension to all classes of constraints it can then be stated:

For any finite collection of Φ-constraints G, there exists G ∈ G such that the minimal
p-set XG for G is also the solution for G.

Thus:

For any nested p and finite collection G of nonempty sets which have minimal p-sets,
there exists G ∈ G for which the minimal p-set XG for G is also the solution for G.

Hence the formal results imply a strong statement about this type of problem.

5 Conclusion

Assuming a family of sets which is both nested and contains a minimal satisfying element
for every closed constraint, any finite collection of closed constraints has an optimal which
is determined by a single constraint in the collection. This constraint may not be unique.

Of note, the results presented here are generalizations of that work since the continuity
condition in the cited work implies that the imposed constraint will be closed. Further, we
have presented a formally verified extension for arbitrary classes of constraints which imply
that, for an arbitrary nested family F , there will always be a singleton supporting set for
finite collections of nonempty constraints which all have minimal satisfying sets in F .

For more complex families of sets, such as hyper-rectangles in Rm, the problem is still
open. Proving bounds on the supporting subsets of this type of optimization problem
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promises to have beneficial applications in the area of control systems from which the cited
papers are drawn. The problem domain is richer than the abstraction presented here, so
other approaches may provide meaningful insights as well.
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