
Conf-DDDD-IN

Accessing Data Stored in Amazon S3 
Using the Hyrax OPeNDAP Server

Fall 2018 AGU

This work was supported by NASA/GSFC under Raytheon Co. contract number NNG15HZ39C.
This document does not contain technology or Technical Data controlled under either the U.S. International Traffic 

in Arms Regulations or the U.S. Export Administration Regulations.

David Fulker
EED-2 Contractor
dfulker@opendap.org

Nathan Potter
EED-2 Contractor
ndp@opendap.org

James Gallagher
EED-2 Contractor
jgallagher@opendap.org

mailto:dshum@raytheon.com


Conf-DDDD-IN

Outline
● Background
● Optimizations
● Improvements
● Conclusion



Conf-DDDD-IN

Background
● Hyrax can serve data stored on S3 in a way 

that is competitive with data stored on a 
spinning disk

● Several approaches are evaluated
● We show that caching metadata, parallel 

access and connection reuse all provide 
significant improvements when accessing 
data from S3 



Conf-DDDD-IN

Software Architectures Evaluated

● Caching

● Subsetting

● Baseline - reading from a spinning disk

● All of these ran in the AWS environment



Conf-DDDD-IN

Caching Architecture
● Data are stored on S3 as files
● Files are transferred from S3 to a 

spinning disk cache (EBS, EFS)
● Data are read from the cached files 

and returned to clients

Advantages: Works with any file, easy to 
use with legacy software, files easy to 
obtain, minimal configuration metadata 
needed

Disadvantages: Initial cost to transfer the 
whole file, slower than the subsetting 
architecture



Conf-DDDD-IN

Subsetting Architecture - Virtual Sharding

● Data are stored on S3 as files (HDF5)
● Data are read from S3 by reading 

parts (virtual shards) of the file

Virtual Sharding: Break a file into virtual 
pieces. Each shard is defined by its size 
and position in the file

Advantages: faster than caching, data 
cache not needed, only data needed are 
transferred from S3

Disadvantages: effectively a new data 
format with tricky subsetting issues, more 
configuration metadata needed



Conf-DDDD-IN

Subsetting Architecture Optimizations

1. Optimized metadata storage

2. Exploit parallel aspects of data access

3. Reuse HTTP 'connections'



Conf-DDDD-IN

Optimize Metadata Storage
Caching metadata shortens 
response times

● For data files with O(103) 
variables, two orders of magnitude 
improvement

● Number of variables and attributes 
determines time to build a 
metadata response

● Response time includes time to 
build and transmit

● The Metadata store holds 
preformatted responses - they are 
transmitted without additional 
encoding

● Objects in the Metadata Store are 
when building data responses



Conf-DDDD-IN

Subsetting Architecture Optimizations 

● Greater than 4X improvement
● Special handling of subsetting

strides
● Split selection of the virtual 

shards from transfer and 
processing

● Parallel transfer of shards 
minimizes initial costs of 
transfer



Conf-DDDD-IN

Connection Reuse and Parallelism
Connection, 
Parallelism reduce S3 
transfer times

● Connection reuse 
provides substantial 
reduction in transfer 
time

● Parallel transfers 
similarly provide 
reduction in transfer 
time

● These techniques 
can be combined for 
(modestly) 
increased 
performance



Conf-DDDD-IN

Performance Before Optimizations
Without optimization, 
caching outperforms the 
subsetting architecture 
for some requests*, 
even though it transfers 
much more data than 
needed

*For large HDF5 files 
with ~1,000 compressed 
variables, requesting 
~40 variables takes 
longer 

Shown: Caching and 
subsetting (yellow and 
blue) and access when 
data are stored on 
spinning disk (green)



Conf-DDDD-IN

Performance After Optimizations
After optimization the 
subsetting algorithm 
performance exceeds 
the caching algorithm

Shown: Caching and 
subsetting (yellow and 
blue) and access when 
data are stored on 
spinning disk (green)



Conf-DDDD-IN

Conclusions

● Optimizing access to S3 can provide large 
enough performance differences to affect 
algorithm selection

● The complexity of these improvements is not 
trivial, so it will benefit users if these optimizations 
are packaged in a way they can use easily (e.g., 
a web API)

● These optimizations can be applied to 'legacy' 
data 



Conf-DDDD-IN

14

This work was supported by NASA/GSFC under 
Raytheon Co. contract number NNG15HZ39C.

in partnership with


	Accessing Data Stored in Amazon S3 Using the Hyrax OPeNDAP Server
	Outline
	Background
	Software Architectures Evaluated
	Caching Architecture
	Subsetting Architecture - Virtual Sharding
	Subsetting Architecture Optimizations
	Optimize Metadata Storage�
	Subsetting Architecture Optimizations 
	Connection Reuse and Parallelism
	Performance Before Optimizations
	Performance After Optimizations
	Conclusions
	Slide Number 14

