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Background
● Hyrax can serve data stored on S3 in a way 

that is competitive with data stored on a 
spinning disk

● Several approaches are evaluated
● We show that caching metadata, parallel 

access and connection reuse all provide 
significant improvements when accessing 
data from S3 
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Software Architectures Evaluated

● Caching

● Subsetting

● Baseline - reading from a spinning disk

● All of these ran in the AWS environment
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Caching Architecture
● Data are stored on S3 as files
● Files are transferred from S3 to a 

spinning disk cache (EBS, EFS)
● Data are read from the cached files 

and returned to clients

Advantages: Works with any file, easy to 
use with legacy software, files easy to 
obtain, minimal configuration metadata 
needed

Disadvantages: Initial cost to transfer the 
whole file, slower than the subsetting 
architecture
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Subsetting Architecture - Virtual Sharding

● Data are stored on S3 as files (HDF5)
● Data are read from S3 by reading 

parts (virtual shards) of the file

Virtual Sharding: Break a file into virtual 
pieces. Each shard is defined by its size 
and position in the file

Advantages: faster than caching, data 
cache not needed, only data needed are 
transferred from S3

Disadvantages: effectively a new data 
format with tricky subsetting issues, more 
configuration metadata needed
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Subsetting Architecture Optimizations

1. Optimized metadata storage

2. Exploit parallel aspects of data access

3. Reuse HTTP 'connections'
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Optimize Metadata Storage
Caching metadata shortens 
response times

● For data files with O(103) 
variables, two orders of magnitude 
improvement

● Number of variables and attributes 
determines time to build a 
metadata response

● Response time includes time to 
build and transmit

● The Metadata store holds 
preformatted responses - they are 
transmitted without additional 
encoding

● Objects in the Metadata Store are 
when building data responses
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Subsetting Architecture Optimizations 

● Greater than 4X improvement
● Special handling of subsetting

strides
● Split selection of the virtual 

shards from transfer and 
processing

● Parallel transfer of shards 
minimizes initial costs of 
transfer
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Connection Reuse and Parallelism
Connection, 
Parallelism reduce S3 
transfer times

● Connection reuse 
provides substantial 
reduction in transfer 
time

● Parallel transfers 
similarly provide 
reduction in transfer 
time

● These techniques 
can be combined for 
(modestly) 
increased 
performance
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Performance Before Optimizations
Without optimization, 
caching outperforms the 
subsetting architecture 
for some requests*, 
even though it transfers 
much more data than 
needed

*For large HDF5 files 
with ~1,000 compressed 
variables, requesting 
~40 variables takes 
longer 

Shown: Caching and 
subsetting (yellow and 
blue) and access when 
data are stored on 
spinning disk (green)
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Performance After Optimizations
After optimization the 
subsetting algorithm 
performance exceeds 
the caching algorithm

Shown: Caching and 
subsetting (yellow and 
blue) and access when 
data are stored on 
spinning disk (green)
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Conclusions

● Optimizing access to S3 can provide large 
enough performance differences to affect 
algorithm selection

● The complexity of these improvements is not 
trivial, so it will benefit users if these optimizations 
are packaged in a way they can use easily (e.g., 
a web API)

● These optimizations can be applied to 'legacy' 
data 
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