Developing a community of practice for applied uses of future PACE data to address food security challenges

Stephanie Schollaert Uz1, Woody Turner2, Cara Wilson3, Jeremy Werdell1, Maria Tzortiou4, Ali Omar5
1NASA Goddard Space Flight Center, Greenbelt, MD 2NASA Headquarters, Washington, DC 3NOAA Marine Fisheries Service Southwest Fisheries Science Center, Monterey, CA 4The City College of New York, New York, NY 5NASA Langley Research Center, Hampton, VA

Abstract
Ocean color satellite measurements have yielded valuable information about the base of the marine food web for over 20 years. The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is building an advanced spectrometer to further refine ecosystem monitoring. Higher spectral resolution data from PACE will enable identification of additional marine biological indicators and their response to multiple stressors to guide sustainable management. Seafood is an important source of protein for a significant number of people. Wild catches cannot match increasing demand and their sustainability is in question. Aquaculture is an ever more important industry to feed the world’s population. We share early efforts to engage a community of practice around food security to increase satellite data product use in support of resource management, business decisions, and policy analysis. Understanding the needs of applied scientists as well as non-traditional users of satellite data early in the PACE mission process will improve planning and preparation for a broader user base and hopefully help to mitigate food insecurity.

Methodology
- Interagency workshops relevant to PACE have been hosted by NASA Goddard Applied Sciences:
 o September, 2017: Water Quality
 o November, 2017: Ocean Health and Ecosystems
 o August, 2018: Chesapeake Bay Water Quality
- Post-workshop surveys and PACE user survey created to identify potential early adopters to help NASA anticipate the scope of PACE science and applications.
- Interagency Chesapeake Bay Working Group, led by NASA Goddard and including NOAA (i.e. Chesapeake Bay Office and others), meets monthly to connect ocean color scientists with resource managers to advance local applications of satellite data products related to water quality and other indicators of ecosystem health.
- Pilot project between NASA/MDE/UMD will explore the use of multispectral airborne and satellite sensors to detect waste discharge into the Chesapeake Bay around oyster beds.

Outcomes
- Various sectors have diverse requirements (i.e., fishing, shellfish aquaculture, ecosystem services). There is a need to integrate multiple data sources into decision-support tools - no single platform can meet all needs.
- Need for capacity building to non-remote sensing scientists (e.g., NASA Applied Remote Sensing Training webinars on Aquatic, Coastal and Ocean Applications, Harmful Algal Blooms)
- Future workshop will focus on integrating observational (in situ and remotely sensed) and modeling efforts

References