

Institute

Abstract: Solar active regions (ARs) contain the brightest structure inside the AR. In the present work we report fine-scale transient brightenings and flows in the coolest loops (the counterpart of chromospheric arch filament systems long observed in 172 Å by Hi-C2.1. Some of these are rooted, at one of their feet, in mixed-polarity field in the photosphere. We complement the 5-min Hi-C2.1 data with SDO/AIA/HMI and IRIS SJ images and spectral data, and examine fine-scale events, flows in the arch filament system, similar to that long observed in filaments. There are scattered fine-scale brightening events. Most, if not all, of these brightenings are at sites of converging opposite-polarity magnetic flux (implying flux cancellation, sometimes resulting from flux emergence). The fine-scale flows stem from some of the brightenings. Flux cancellation at these sites apparently results in fine-scale explosions that drive the counter streaming flows. In the IRIS spectra, we look for evidence of upflows from brightenings at ends of loops of the arch filament system.

Fig. 1. (a). HiC2.1 full image in 172 Å, with the cool arch filament system outlined by the blue box, which is zoomed in panel (b). Panels (c) AIA 171, (d) IRIS SJ 1400, and (e) HMI line-of-sight (LOS) magnetogram, are of the same field-of-view (FOV) as (b). In (e) white/black areas have positive/negative flux saturated at +/-400 G, outlined by blue/white contours of 25G, which are also overplotted in (c) and (d). An arrow in each panel from (b) to (e) points to a transient event (categorized as Type II) described later. Also see videos.

Summary and Outlook: We find three types of transient brightenings, each at mixed-polarity flux. A few of these cases, particularly in the Type II (loop eruptions with mostly unidirectional flow) have flux emergence before flux cancellation, thus suggesting a loopinteraction scenario, as suggested by Hanaoka (1997) for flares, jets, and surges. Counter streaming flows, driven by explosive events at base, are found in most of the large loops in the arch filament system. Because the light curves peak nearly simultaneously, and for none of the events show a systematic trend of cooling, all three types might have transition-region and/or chromospheric (and not coronal) origin. Spectra available for type III show complex activities at their base, and upflowing cool material as expected in a surge/jet activity. A detailed study is underway.

SKT gratefully acknowledges supported by an appointment to the NASA MSFC, administered by USRA through a contract with NASA. RLM and ARW are supported by funding from the NASA's Science Mission Directorate. B.D.P. gratefully acknowledges support from NASA grants NNX16AG90G, and NNG09FA40C (IRIS). Use of data from HiC2.1, IRIS, and AIA+HMI (SDO) is acknowledged.

Transient fine-scale brightenings, flows and flux cancellation in the cool arch filament system observed with HiC2.1 Sanjiv K. Tiwari^{1,2*}, Navdeep K. Panesar³, Ronald L. Moore^{3,4}, Bart De Pontieu¹, Amy R. Winebarger³, and the HiC2.1 Science Team ¹Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Building 252, Palo Alto, CA 94304, USA ²Bay Area Environmental Research Institute, NASA Research Park, Moffett Field, CA 94035, USA ³NASA MSFC, & ⁴CSPAR UAH, 320 Sparkman Drive, Huntsville, AL 35805, USA

Overview 171 Å 29-May-2018 19:00:33.350UT HMI 6173 Å 29-May-2018 19:00:37 2000T

Type II. Confined eruptions in loops: double-loop configuration/interaction

field -- first flux emergence is seen, then flux cancellation leading to this event. Plasma flows up/out to the right and then back.

Event Type	AIA Peak Time	Neutral line	Hi-C2.1	IRIS SJ/Spectra	Flux emergence	Flow	Flux converge- nce/cancellation	Lifetime (seconds)
Ι	18:58:45	Yes	Yes	Yes/No	Yes	Not clear	Yes	98
Ι	18:58:33	Yes	Yes	Yes/No	No	Not clear	Yes	83
Ι	19:01:57	Yes	Yes	Yes/No	Yes	Not clear	Yes	60
II	19:00:45	Yes	Yes	Yes/No	Not clear	Unidirectional	Yes	120
II	18:58:57	No	Yes	Yes/No	No	Unidirectional	Yes	48
II	18:57:21	Yes	Yes	Yes/No	Not clear	Unidirectional	Yes	115
III	19:33:21	Yes	No	Yes/Yes	Yes	Bidirectional	Yes	265
III	18:42:33	Yes	No	Yes/Yes	Yes	Bidirectional	Yes	240
III	18:49:57	Yes	No	Yes/Yes	No	Not clear	Yes	168

Fig. 4. Surge-like activity accompanied by transient brightenings and flows at the base. These start at a location of mixed-polarity