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e Apparently arises from difference in friction Grain Size (mm)

Hypothesis 2: Basin-breaching flood carves most of the outlet canyon in a geologically (i.e. flow depth vs. grain size).

short period of time. Prediction would be that outlet is controlled by the flood.

Bedload experiments, different grain size:
Mars vs. Earth (ratio of final outlet volumes)

Observational strategy:
o Measured 24 open basin lakes, selected based on availability of stereo DTMs.

e Determined pre-breach highest closed contour (magenta) and post-breach surface

elevation (yellow) from current spillover point. References:
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