Examining convective sighatures in scatterometer data
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Background

e Scatterometers have been used repeatedly to examine convectively driven
winds near precipitation

* Recent work (e.g., Portabella et al. 2012, Elsaesser and Kummerow 2013,
Kilpatrick and Xie 2015) has indicated that real signatures are observed
despite confounding issue of rain contamination

 OVWST-funded work culminating in Priftis et al. (2018) demonstrated value
of using ground-based polarimetric Doppler radar in concert with
scatterometers to understand low-level winds near mesoscale convection

 OVWST-funded work culminating in Garg et al. (2018) introduced a novel
technique for identifying cold pools with scatterometers
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(c) Fraction of data with LWP above/below threshold
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(b) Fraction of data with DO above/below threshold
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Polarimetric radar comparison

e Resample NEXRAD to ASCAT
12.5-km resolution

* Rain rate and median volume
diameter thresholds that lead
to triggering of ASCAT QC
flags vary by case/overpass

* However, ice and liquid water
paths for unflagged ASCAT
obs are nearly always < 0.5 kg
m-2.



* We hypothesize that an approach based on closed areas
of wind gradients (or gradient features — GFs) can be
used to identity the cold pools over tropical oceans.

* Cold pools form a gust front boundary, thus creating an
area of steep gradients in horizontal winds.

* We identity the areas of increased scalar gradients in the
horizontal wind using:
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Wind gradients will surround a cold pool
Cold pool size related to parent storm size

and organization
Ostensibly detectable via scatterometer
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’ DCtDbE 2011 16:30 UTC 305K Example from WRF simulation

e C(Calculate gradient wind
magnitude in resampled output
from WRF simulation of DYNAMO
convection

e * |dentify gradient features (GFs)
using standard image processing
and edge detection analysis
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Gradient Feature Global Analysis
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* Density corresponds well to
known global distribution of
tropical rainfall
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(@) Annual-mean WW
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Thornton et al. (2017; GRL)

Lightning enhanced by about a
factor of ~2 directly over two of
the busiest shipping lanes in the
Indian Ocean and South China Sea
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o e Study hypothesizes that ship
exhaust particles change storm
cloud microphysics, causing
enhanced condensate in mixed-
phase region and thus lightning
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Ship track signatures also observed in ASCAT GF dataset
e Consistent with presence of more intense convection — more gust fronts expected!
* Or related to ship reflections from busy shipping lanes?



Precip Rate (mm h~') or Wind Speed (m s 1)

(a) IMERG and CYGNSS Map - 08/28/2017 11:06
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(b) IMERG and CYGNSS Time Series - 08/28/2017 11:06
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Convective Signatures in CYGNSS Data

Combine CYGNSS specular point
tracks with IMERG precipitation

* Have found numerous examples of
wind gradients (B) in/near significant
convective precipitation (A)

* Gradients not always observed in
NWP analyses



Conclusions
* Convective signatures are evident in scatterometer data

* Polarimetric and Doppler radar is useful to help cross-check winds and rain
flags and thus help distinguish between good/corrupted patterns

* GF technique shows excellent promise, particularly when applied to higher-
resolution data

* Potential corroboration of enhanced convection in busy shipping lanes (or
evidence that ships do provide significant scatterometer signature)

* CYGNSS provides a new avenue for cross-checking scatterometer-detected
convective signatures



