Renin-Angiotensin system (RAS) in Hematopoietic Stem/Progenitor Cells (HS/PC) Predicts Vaso-reparative Dysfunction and Progression of Diabetic Retinopathy (DR)

Yaqian Duan^{1,2}, Eleni Beli², Sergio Li Calzi², Judith L. Quigley², Rehae C. Miller², Leni Moldovan², Tatiana Salazar², Sugata Hazra³, Jude Al-Sabah², Kakarla V. Chalam⁴, Thao Le Phuong Trinh^{1,2}, Ruchi J. Vyas⁵, Matthew C. Murray⁵, Patricia Parsons-Wingerter⁵, Gavin Y. Oudit⁶, and Maria B. Grant^{1, 2}

Author Affiliations:

^{1.} Department of Integrative and Cellular Physiology, Indiana University School of Medicine, Indianapolis, IN

^{2.} Department of Ophthalmology, The Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN

^{3.} Department of Internal Medicine, University of Utah, Salt Lake City, UT

^{4.} Department of Ophthalmology, University of Florida, Jacksonville, FL

^{5.} Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field, CA

⁶ Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.

Purpose: We tested the hypothesis that loss of angiotensin converting enzyme 2 (ACE2) within diabetic HS/PCs would be detrimental to HS/PC reparative function, and alter their ability to contribute to vascular remodeling in human subjects and rodent models of DR.

Methods: Subjects (n=52) were recruited as controls (n=13) or diabetics (n=39) with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34⁺ HS/PCs were isolated from peripheral blood. RAS gene expression and migration was measured. Diabetic ACE2 knockout (KO)/C57BL/6-*Ins2* (Akita) mice at 3, 6 and 9 months of diabetes were compared to age-matched controls. Bone marrow HS/PC populations were analyzed by flow cytometry and migration and proliferation studies performed.

Results: ACE2 gene expression in human CD34⁺ cells from diabetics without DR was increased compared to controls (p=0.0437). Mas receptor mRNA was also increased in diabetics without DR, but reduced with the onset of NPDR (p=0.0002), suggesting a loss of compensation. DR was associated with CD34⁺ cell migratory dysfunction. By VESGEN analysis, vessel density measured by several confirming parameters in early NPDR (n=3) was greater than in normal retina (n=6) in both arteries and veins, which suggests active retinal remodeling. ACE2KO-Akita and Akita cohorts showed reduced retinal thickness by OCT at 9 months of diabetes. Absence of ACE2 in 9-month Akita mice led to an accelerated

increase in acellular capillaries compared to diabetic alone. Electroretinogram (ERG) in ACE2KO-Akita mice resulted in persistent deterioration of the neural retina. Reparative function studies showed that ACE2KO exacerbated diabetes-induced impairment of LK cell migration and proliferative functions as early as 3-month of diabetes (p=0.0019).

Conclusions: Retinopathy and adverse vascular remodeling in subjects with diabetes was associated with a loss of the protective arm of RAS in HS/PCs. Loss of ACE2 exacerbated vascular dysfunction in diabetic mice.