Narrowing Ocean Latent Heat Flux Uncertainties: Perspectives from Reanalysis and Satellite Estimates

Franklin R. Robertson¹ (<u>pete.Robertson@nasa.gov</u>), Jason B. Roberts¹ and Michael G. Bosilovich² ¹NASA / Marshall Space Flight Center Huntsville, AL 35805, USA ²NASA / GSFC Global Modeling and Assimilation Office Greenbelt, MD 20771

Issues & Challenge:

NASA

Latent heat flux (LHF) is a major component of the net surface energy exchange governing ocean heat content and storage rate. Reanalyses using reduced observational input: NOAA 20th Century Reanalysis (P_s); CERA-20C (Marine wspd, P_s) and JRA-55C (conventional data only), avoid discontinuities induced by assimilating broader satellite record. But how useful are they? LHF retrievals using passive microwave satellite data (e.g. SeaFlux, JOFURO-3, IFREMER4 and HOAPS4) are maturing but still suffer from inadequate validation data, lack of direct sensitivity to near-surface moisture, and ambiguities in surface wind stress / wind speed relationships. <u>Can the complementary aspects of these data sets help quantify and reduce ocean LHF / Evaporation uncertainties?</u>

Summary Points:

- (1) Regime dependent biases associated with large-scale dynamics and SST distributions control vertical moisture stratification and uncertainty in satellite qa retrievals; however, the effect on global mean LHF variations is small.
- (2) SST trend differences between OISST-AVHRR (used by HOAPS4, SeaFlux2 and IFREMER4) and reanalyses whose SST record includes cooler passive microwavederived SSTs post-1992 are a significant source of larger satellite qs-qa trends compared to those of reanalyses.
- (3) Global mean LHF / E estimated independently from GPCP P and ocean → land moisture transport inferred from LSM P-ET suggests further improvement to satellite derived near-surface meteorology will reduce decadal scale global LHF trends.

Data Sets

J-OFUR03, https://j-ofuro.scc.u-tokai.ac.jp/en/ IFREMER4, https://wwz.ifremer.fr/oceanheatflux/ HOAP84, https://wwi.cmsaf.eu/safira/action/viewD oiDetails?acronym=HOAPS_V002 IRASSC, http://irakibau.go.jp/IRA-S5/

index_en.html NOAA/ESRL 20CRv2c,https://www.esrl.noaa.gov/ psd/data/20thC_Rean/

CERA-20C, https://www.ecmwf.int ERA5,https://www.ecmwf.int

Ancillary passive / active microwave wind speed retrievals from Remote Sensing Systems (RSS) http://www.remss.com/.

P-ET from GPCP, https://precip.gsfc.nasa.gov/ and seven LSM systems, see Robertson et al, (2014 J. Climate)

All data are monthly mean quantities and have been interpolated to a 1.0 x 1.0 latitude / longitude grid.

Climatologies and State / Time Dependent qa Biases

Hough patternwise shows a show of the show of

- (Left) Climatological biases relative to ICOADS ship data portrayed in q₉₀₀/TPW; SST space. (Right) Mean differences (product minus in situ observations) over the common period 1999-2008.
- All qa retrievals tend to be too moist in well-mixed convecting regions and too dry in stable, descending regions.
- HOAPS4, which uses an older Bentamy (2006) qa algorithm, is most extreme.
- Red (blue) contours outline the 15% relative frequency of occurrence regions for the subtropical descent and deep convective dynamical regimes.

Time–Dependent Global Mean LHF Variability

 Interannual variability (strongly influenced by ENSO events) is similar among all data sets, especially post 1992 when passive microwave satellite coverage is more robust.

- Low-frequency behavior and trends are much greater in IFREMER4 and HOAPS4 but JOFURO3 is generally closer to reanalyses (including the partial record of the emerging ERA5 reanalysis.
- SeaFlux algorithm extreme sensitivity to: (1) Earth Incidence Angle variability and (2) single sensor algorithm training data coverage is currently being corrected.
- An independent global ocean evaporation estimate (--) made by combining GPCP ocean precipitation estimates and land / ocean moisture transport, P-ET, from observationally-driven land surface models: $E_{oc} = P_{oc} + \int_{arrow} (P ET)_{LNOD} \delta a$. supports much smaller reanalysis LHF/E trends and suggests that larger satellite trends are due to algorithm / data issues.

 Differences in qs(SST) used in satellite retrievals (HOAPS4 and IFREMER) vs reanalysis values (corr) is a significant contribution to qs-qa trend differences.

• IFREMER qs(OISST) is 0.5 gKg⁻¹ larger than that of SeaFlux or HOAPS qs(OISST) for Jan2007-Oct2011.

- -0.4 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
- HOAPS4, JOFURO3 and IFREMER4 winds speeds track reanalyses after robust SSMI coverage in mid-1990s.
- Independent single sensor 10m wind speed retrievals confirm F16 time dependent biases (likely due to sensor antenna degradation).

LHF Trends 1992/2010

- Satellite-derived LHF trends (SeaFlux omitted) are systematically higher than reanalyses equatorward of 40°, especially over the Atlantic and Indian Oceans. Reanalysis reductions in eastern Tropical Pacific LHF is consistent with negative trend of Pacific Decadal Variability index during this period.
- Satellite qs-qa trends (expressed as % of climatological values) are substantially larger than in reanalyses and correlate strongly with the LHF trend outside the E Pacifc.
- Reanalysis fractional wind speed trend patterns agree reasonably over the Pacific basin, consistent with changes in PDV, but they differ in the western Indian Ocean.

