

NPAS Physics Pump Models for Autonomous Monitoring PREPARED BY PETTE JOSEF RAMOS **ELGIN COMMUNITY COLLEGE** FERNANDO FIGUEROA, MENTOR AUTONOMOUS SYSTEMS LABORATORY

Overview

Introduction

- Background
- Project Objectives
- ► Solutions
- ► Importance of ISHM
- Lessons Learned
- Skills Acquired
- ► Future Plans
- Acknowledgements

Introduction

- Major: Biomedical Engineering
- **College:** Elgin Community College in Elgin, Illinois
- Prior to Internship:
 - NASA Community College Aerospace Scholar
 - Biomedical Engineering Volunteer
 - Taekwondo Instructor

Background

- The Intelligent Stennis Gas House Technology (INSIGHT) is a project that uses NASA Platform for Autonomous Systems (NPAS) to implement autonomous operations at the Gas House
- Initially INSIGHT is implementing autonomous operations of the Nitrogen system

Background From Previous Interns

Andrew Yeo, a former NASA intern, provided the theory of how the centrifugal pump should work and left behind equations and parameters to begin coding in NPAS

Former Interns Kyle Bentain and Wilson Barce laid the groundwork for reasoning using the physics pump model

Project Objectives

Learn how to program using the G2 Software environment

Create procedures and methods to detect cavitation in a centrifugal pump and other features such as efficiency

Verify that the code and theory work by implementing test cases

Begin implementation of the generic rotational pump model package for the High Pressure Gas Facility

Solutions

Created a workspace to test the code of the previous interns and modified the code as needed

Acquired data at the High Pressure Gas Facility to verify calculations

Create rules to make relevant calculations automatically in 5 second intervals

PM-Functions workspace

	NS				- D ×
PM-FUNCTIONS					
Instances and	Relationships	Procedures	Buttons	Rules	
			calculations	unconditionally start begin-calculati	ons (RP1)
BP1	MOTOR-1	BEGIN-CALCULATIONS	Enable/Disable F	Rule	
	\square		enable and dis	able motor procedures	
RULE	N2 ENAB	LE-AND-DISABLE-MOTOR-PROCEDU	JRES		
MOTOR-SPEC					

This workspace was used to simulate a running pump and motor

Instances/Objects

- Each instance is a representation of an object that is used at the Gas House with the exception of the "RULE" instance (more on that later)
- RP1 represents a centrifugal pump that is connected to MOTOR-1
- The connectivity automatically enables use of the linked motor and pump parameters in the modeled equations
- N2 represents the commodity that is being passed through the pump (RP1), which is Liquid Nitrogen
- RULE is used to disable and enable the use of the model when needed

Attributes

MOTOR-1, a pm-motor				🔁 RP1, a pm-rotary-pump		
	UUID	"f890fe30d95211e88139d4258bf7213b	b"	UUD	"bd2afa43db8911e88139d4258bf7213b"	
	Notes OK			Notes	ОК	
Item configu	uration	none		Item configuration	none	
1	Names	MOTOR-1		Names	RP1	
Motor torque co	Motor torque constant 1.246			Commodity	n2	
Gearbox reductio	on ratio	4.91		Flow order	50	
Rotational	speed	3525.0		Inlet diameter	2.5	
Specified operating amp	perage	34.4		Outlet diameter	1.5	
Specified operating voltage		460.0		Inlet height	2.0	
Specified motor efficiency		0.95		Outlet height	6.0	
Input amperage		18.0		Specified net positive suction head	4.6	
Input wattage		8280.0		Inlet pressure	18.5	
Shaft torque		110.121		Outlet pressure	118.7	
Motor efficiency		0.781		Inlet temperature	-317.7	
_				Outlet temperature	-313.5	
http://www.comm	nodity			Volumetric flow rate	92.3	
UUID	" c 3572	739c68611e88136d4258bf7213b"		Inlet density	0.029	
Notes	OK	эк		Outlet density	0.025	
Item configuration	none			Net head	5.031	
Names	N2			Pump efficiency	0.627	
Isothermal coefficient	ient 13.98			Net positive suction head	8.451	
Specific heat capacity 0.486			Allowable model error	0.357		
Vapor pressure 0.057						

🔁 RULE, a pm-	rules 📃 🗖 🗙			
UUID	"781d99afde0611e8813ad4258bf7213b"			
Notes	ок			
Item configuration	none			
Names	RULE			
×	0			

- Each instance contains a set of attributes
- The attributes in this case hold raw data and calculations
- These calculations are made through procedures and methods
- Raw data was collected by reading pressure, temperature, and flow rate sensors at the HPGF

Procedures, Rules, and Buttons

Procedures	Buttons	Rules			
	calculations	un conditionally start begin-calculations (BP1)			
BEG IN-C ALCULATIONS	Enable/Disable Rule				
	e and disable motor procedi	ures			
ENABLE-AND-DISABLE-RULE					
ENABLE-AND-DISABLE-MOTOR-PROCEDURES					

- The following procedures have different functionalities:
 - Begin-calculations calculates all attributes of a class through the use of a button
 - Enable-and-disable-rule turns a rule on/off when in administrator mode

- Buttons trigger these procedures to begin
- Rules were used to have the procedures run automatically

Procedures, Rules and Buttons (cont.)

Programmatically Disabling and Enabling a Rule

ENABLE-AND-DISABLE-RULE a procedure		
	Rules	Message Board Wednes
Notes OK	calculations	The rotary pump RP1
Authors piramos (2 Nov 2018 2:04 p.m.)		does not fit the pump
Change log 0 entries	un conditionally start begin-calculations (RP1)	model
Item configuration none		
Tracing and breakpoints default		#940 4:03:41 p m
Class of procedure invocation none		#640 4.03.41 p.m.
Default procedure priority 6		The pm-motor
Uninterrupted procedure execution limit use default		MOTOR-1 is operating
//This procedure attempts to enable and disable a rule when a button is pressed		below the minimum
enable-and-disable-rule (R: class pm-rules)		efficiency.
//Note: To allow procedure to run, you need to be in administrator mode		#841_4:03:41 p.m
ThisWindow: class G2-Window = sequencer-1-window; //Initializing the window required for the procedure		The rotary pump RP1
x integer = the x of RULE; begin	RULE, a pm-rules	does not fit the pump model.
conclude that the may-refer-to-inactive-items of the evaluation-attributes of	UUID "781d99afde0611e8813ad4258bf7213b"	
enable-and-disable-rule is true; //conclude that the x of BLILE = 1:		#842 4:03:46 p.m.
//conclude that the x of RULE = 0;	Notes OK	The pm-motor
case (x) of	Item configuration none	MOTOR-1 is operating
begin	Names BLILE	below the minimum
call g2-system-command (the symbol enable, ThisWindow, pump-rule,		eniciency.
the symbol none); post "Calculation Bule has been enabled"	X 1	
end;		#843 4:03:46 p.m.
u: begin		The rotary pump RP1
conclude that the x of RULE = 1;		does not fit the pump
symbol none);		model.
post "Calculation Rule has been disabled" end:		
end;		#844 4:03:48 p.m.
		Calculation Rule has
		been disabled

Logic

Common Problems

- One of the biggest problems when running a procedure lied within the units being used for each equation
- As a way to distinguish the required units, documentation and comments were made for each procedure to keep all units uniform to the equations
- Miscellaneous equation errors

UNITS:

Length/Distance: Inches (in)

Weight: Pounds (lbs)

Time: Minutes (min)

Volume: Gallon's (G) * {in*3 for calculations)} [conversion factor: *231]

Pressure: Pounds per square-inch (psi)

Density: Pounds per cubic inch (lbs/in*3)

Rotational Speed: Revs/Minute (rpm) {rev/s for calculations} [conversion factor: \pm 1/60]

Linear Speed: In ches per second (in/s)

Volumetric Flow Rate: Gallon's per minute (GPM) {in ^3/s for calculations} [conversion factor: * 3.85]

Gravitational Constant: inches per second*2 (in/s*2)

Power: in-Ibs/s

** Note: When doing calculations, convert all units to pounds, inches, and seconds

Importance of ISHM

- The Integrated System Health Management (ISHM) is a component of NPAS that utilizes 4 functionalities:
 - Anomaly Detection
 - Diagnositcs
 - Prognostics
 - Integrated Awareness
- Each of these functionalities work hand in hand to detect a problem in a system and to predict possible outcomes.

Moving Forward

- Further develop symcure functionalities for root-cause analysis
- Implementation to the Gas House
- Implementing a saturation table that include temperature, pressure, and density

Lessons Learned

How to program in the G2 Software environment

Familiarity and coding for NPAS

Application of physics in real world situations

The properties of cryogenics and liquid nitrogen and their affects in the operations at Stennis Space Center

How the Gas House system functions

Skills Acquired

Programming for the first time

Coding using object-oriented programming

Project management using scrum

► Root cause analysis

Physics models for rotary pumps and motors

Future Plans

Acknowledgements

- Fernando Figueroa, NASA Mentor
- Andrew Tidwell, D2K Contractor
- Mark Turowski, NASA- High Pressure Gas Facility
- Wilson Barce, Former NASA Intern
- Lauren Underwood, NASA
- D2K Technologies (Mark Walker, Jon Morris, Neal Gross, Joshua Broberg, Brian Rey)

Thank You NASA!

