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Why model wetlands? 2. Modeling wetland type: can we predict methane-relevant wetland types?

Background, Data and Methods: Wetland type, based on wetland ecosystem, soil type/phase, permafrost presence or absence, inundation dynamics, air and soil temperature, and other variables, is widely understood to strongly influence CH4 emission (e.g, MF87, Olefeldt et al
2013, Li et al 2016), yet wetland types are not are not included in methane-wetland models (e.g., Melton et al. 2013). Hierarchical clustering was used by Johnston et al (2009) to examine environmental impacts on wetland conditions, but has not been used for methane-relevant
wetland classification.

 Natural wetlands are the largest CH, source now and in the past.
* Wetland distribution and methane emissions sensitive to interannual and long term climate variation.

* High latitude wetlands comprise half of global wetland area and produce about one third of annual methane emissions. o _ _ _ . _ _
o . . , . . , * Observed wetland distribution from MF87 augmented with a suite of geophysical variables that characterize wetland environments:
* Wetland distribution and CH, production are likely to change with at high latitude warming. . _ o _ _ o
* Maximum inundation, inundation duration, annual precipitation

* Mean annual minimum temperature, mean annual temperature range, 0-30cm annual mean soil temperature
* Thaw season duration, snow season duration

* Permafrost extent, ground ice content

* 0-30cm soil organic carbon

* Latitudinal bias in wetland area could cause underestimation of the impact of amplified polar warming on modeled wetland methane emissions.

* Modeling wetlands is critical to predicting future changes in wetlands and their CH4 emission.

1. Modeling wetland distribution: can we predict wetland locations?

Background, Data and Methods: Methane-wetland models use several approaches for predicting methane-producing areas, with a wide range of results (Melton et al 2013,
Wania et al 2013; Riley et al 2011, Marthews et al 2015). We use two simple modeling approaches using landscape slope (Verdin 2011) and modeled water table depth (Fan
et al 2011), and compare the results to the observed wetland distribution based on vegetation and soil type/phase from Matthews and Fung 1987 (MF87).

* Algorithm constrained to produce 8 clusters
* Spatial distribution of the clusters in most common types is analyzed by examining cluster results obtained for each variable individually (individual variable clusters not shown)

* Overlay method: regions meeting a priori slope and water table depth criteria, similar to the method used by UVic (Wania et al. 2013) Fig. 8 Matthews and Fung Wetland Types Fig. 9 Wetland-type Clusters

* Cluster method: hierarchical clustering, which identifies its own criteria based on the input data (Manning et al 2008) Observed wetland types (Fig. 8) that occur >50°N (Matthews and Fung)*

* Wetland fractions at 1 degree are fractional coverage of water table depth <=25cm * Clusters occur in coherent spatial patterns

* Cluster pattern not very similar to observed
types

* Clusters are more likely than observed types
to occur along the same latitude band

FB: cold deciduous forest

FB: temperate/subpolar needleleaf forest
FB: evergreen needleleaf woodlands

FB: subpolar shrubland

Wetland Locations

Fig. 2 Coincidence between MF, Overlay Fig. 2 Coincidence between MF, Cluster
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* Realistic wetland locations near Hudson Bay,
eastern Europe, and western Siberia

* |dentifies large wetland complexes near Hudson
Bay and western Siberia

6. NFB: tundra/bog/forb

13. NFS: short grass, meadow

* |Identifies some nonflooded wetlands in Alaska. « |dentifies some nonflooded wetlands in Alaska

. * FB = forested bog,; NFB = non-forested bog; FS = forested swamp,; NFS = non-forested swam
* Too many wetlands in Canada and Europe, too » Puts wetlands mainly in large continuous swaths of J J I 9; FS =1 wamp f wamp
few in Scandinavia and Russia Canada and Eurasia
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Wetland Areas Table 1. Percent of Total Wetland Grid Cells in Clusters Skill score: 38.0
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Fig. 6 Latitudinal Area by 5 degree zones, 50-90N (million km?) Fig. 7 Taylor Diagram Comparing Overlay and Cluster Spatial Variability Cluster G 0.9 31.6 23.3 48.3 19.9 0.0 14.3 0.0 * Inundation variables have less influence
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* Overlay method produces more realistic areas than cluster method.

Discussion

* Wetland spatial distribution can be simulated with simple input variables and methodology

* Overlay method better at reproducing location, area integrals and spatial pattern of fractional coverage

* Results more realistic than wetland distributions from modeled soil moisture (Melton et al 2013)

* Overlay total area close to observed, too much area between 50-60N, too little area >60N

* Underestimates wetlands in locations with large sub-gridscale slope variability or low modeled water depth fraction

* Overestimates wetlands where modeled water table depth fraction is too large

* All wetland types are associated with multiple clusters
* Clustering controlled primarily by temperature and permafrost

* Overlay method better reproduces location and fractional coverage of wetlands

* Lesser contributions to clustering from inundation variables and soil carbon

* Wetland distribution has been simulated with two methods using simple variables

* Cluster results provide information that may help refine methane-relevant type classification

* Clustering performs poorly for predicting wetland location because it overemphasizes water table depth

* Use permafrost data with better spatial variability within permafrost type
* Inundation data contains small lakes, use inundation of wetlands only

* Refine inundations metrics such as inundation fraction during thaw season
* Repeat clustering, assess role of individual variables, iterate...
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