Using the cFS Command and Data Dictionary (CCDD) to Automate Software Development on Habulous

ANALLE

USC ENGINEERING NASA	NASA		NAME: Robert Hirsh		
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch	Agenda	DATE: 12/03/2018	Page: 2	

- Habulous Background
- CCDD Overview
- CCDD Products used on Habulous
 - C header files that define all software bus commands/telemetry messages
 - Generating file defining the Message ID's used (cfs_msgids.h)
 - XML Telemetry and Command Exchange (XTCE) files (displays)
 - "Protobetter" code (to manage different endian-ness/architectures)
- Development on Habulous
 - CCSDS_v2 extended headers
 - Extending/customizing SBN to pass messages among computers on multiple networks
 - Using SBN_lib to allow non-cFS node to communicate with cFS nodes
- •Next Steps
 - Developing TTE network and schedule tables for all the various CPUs to use

NASA		NAME: Robert	Hirsh
Software Robotics & Simulation Division Spacecraft Software Engineering Branch	Habulous Background	date: 12/03/2018	Page: 3

- •The Habulous project is an Earth-based testbed (HW/SW)
 - •Prototyping future space habitat unit and technologies
 - •Representation from various NASA centers and aerospace organizations
 - » ARC/JSC/GRC/Goddard/Stennis

•Distributed nature of the team makes data interfaces especially critical

- » Massively heterogeneous computer architectures and operating systems 32/64-bit, Big/Little Endian, Linux/VxWorks/Windows, x86/PPC/RaspberryPi
- •Multiple CPUs use the SBN application to communicate
 - » Most CPUs run cFS (use SBN app and Protobetter)
 - » Non-cFS CPU (use SBN_lib with Prototbetter)

Habulous Block Diagram

JSC	NASA	SUBJECT: CCDD Background	NAME: Robert Hirsh	
ENGINEERING	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		DATE: 12/03/2018	Page: 5

- •CCDD stands for cFS Command and Data Dictionary
- •Goddard's Core Flight System (cFS) has been, is, and is intended to be used by many projects
 - Examples: Lunar Reconnaissance Orbiter (LRO), Morpheus, Exploration EMU (xEMU) spacesuit, Orion Backup Flight Software (BFS)
 - Success of the cFS concept is shown by the number cFS projects at FSW-2018
- •A command and data dictionary (CDD) defines telemetry/command messages
- Each cFS project must select a way to manage their CDD
 - Frequently involves using a spreadsheet, with custom SW to convert into useful files
- •cFS Command and Data Dictionary utility (CCDD) was designed as a generic utility to eliminate duplication of effort in order to make CDD management easier

JBC	NASA	SUBJECT:	Goals NAME: Robert	Hirsh
ENGINEERING	Software Robotics & Simulation Division Spacecraft Software Engineering Branch	CCDD Goals	DATE: 12/03/2018	Page: 6

- Create a configurable CDD utility that runs on multiple operating systems
 - Written in Java for maximum portability
- Easy creation/modification of CDD information
 - Graphical user interface (GUI) to interact with the database
- Store all CDD information into a standard database (postgreSQL)
- Bidirectional transfer of information to/from the CCDD
 - Cut-n-paste to Excel, import/export via XTCE/CSV/JSON
- Easy access to CDD information (via scripting languages and web applications)
 - Allows user to code in various languages (ruby/python/js) and access CDD information »Create vehicle and ground software products, data summary, etc
 - »Generate complicated CFS products: Schedule or network tables, copy table, etc

	NASA	SUBJECT: CCDD at a glance	NAME: Robert Hirsh	
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		DATE: 12/03/2018	Page: 7

Data is accessible to scripting languages (JavaScript, Python, etc.)

• Example scripts provided for common products

JBC	NASA		CDD Demo	
ENGINEERING	Software Robotics & Simulation Division Spacecraft Software Engineering Branch	CCDD Demo	date: 12/03/2018	Page: 8

<u>ب</u>		CFS Command	l & Data Dictiona	ry 1.4.1	×		
<u>F</u> ile <u>P</u> roject	<u>D</u> ata S <u>c</u> heduling <u>S</u> cript <u>H</u>	elp			×.		
Project: Sam	Project: SampleProject						
Index	Server	Project	Date/Time	Туре	Message		
6248	5432	SampieProject	12:42:42.376	Success			
6266	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:42:42.584	Success	Project 'SampleProject' locked		
6269	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:42.488	Success	Project 'SampleProject' unlocked		
6270	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:42.489	Success	Project database 'sampleproject' closed		
6271	jsc-er-cfs01.jsc.nasa.gov 5432	*server*	11/27/2018 12:43:42.494	Success	Connected to server as user		
6272	jsc-er-cfs01.jsc.nasa.gov 5432	*server*	11/27/2018 12:43:42.494	Status	PostgreSQL: 8.4 *** JDBC: PostgreSQL 9.4.1207.jre7 (type 4)		
6273	jsc-er-cfs01.jsc.nasa.gov 5432	*server*	11/27/2018 12:43:45.022	Success	Server connection closed		
6278	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:45.060	Success	Connected to project 'SampleProject' as user		
6279	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:45.061	Status	PostgreSQL: 8.4 *** JDBC: PostgreSQL 9.4.1207.jre7 (type 4)		
•							
	Event filter: 🗌 All 📄 Command 🗹 Success 🗹 Fail 🗹 Status						

Show All Message IDs

•cfs_msgids.h file generation

- Same file compiled by all CPUs
- Defines all the MIDs for each cFS message sent/received on any of the various CPUs
- Using CCSDSv2, so each MID is a combination of APID/SystemID/SubSystemID

Owner	Message Name	Message ID	
ACAWS_DE_DiagData_Msg_t	ACAWS_DE_DiagData_Msg_MID	0x00	-
ACAWS_DE_DiagData_t	ACAWS_DE_DiagData_t_MID	0x00	-
ACAWS_DE_ImpactReq_Msg_t	ACAWS_DE_ImpactReq_Msg_MID	0x00	
ACAWS_DE_ImpactReq_t	ACAWS_DE_ImpactReq_t_MID	0x00	
acaws_fd_test_results_msg_type	ACAWS_FD_TEST_RESULTS_MSG_MID	0x00	
acaws_fd_test_results_type	acaws_fd_test_results_type_MID	0x00	
ACAWS_FD_WAKEUP_MID	ACAWS_FD_WAKEUP_MID	0x80	
ACAWS_FIR_HkTIm_t	ACAWS_FIR_HkTIm_MID	0x00	
ACAWS_FIR_OutData_Msg_t	ACAWS_FIR_OutData_Msg_MID	0x00	
ACAWS_FIR_OutData_t	ACAWS_FIR_OutData_t_MID	0x00	
AMPSDB_IO_CMD_MID	AMPSDB_IO_CMD_MID	0x80	
APC_AVAILIBILITY	APC_AVAILIBILITY_MID	0x00	
APC_EA_RESPONSE	APC_EA_RESPONSE_MID	0x00	
apc_load_schedule_response	APC_PLS_RESPONSE_MID	0x00	
CI_APP_CMD_MID	CI_APP_CMD_MID	0x80	

- Using the CCDD information to automatically generate the C-header files
 - Define the structure for all software bus (SB) commands/telemetry messages
- Generate XML Telemetry and Command Exchange (XTCE) files
 - Used by display team to make displays for any CPU
- •Generating "Protobetter" code for communication with other CPUs
 - Manages packing and different endian-ness/architectures

9

 \times

Command

- Updating to CCSDS_v2 (and using CPU# as subsystem ID)
 - Running out of room for unique MIDs on all CPUs for the 11-bits of version 1
 - See next slide
- Exporting XTCE files to allow drag-n-drop display development for all CPUs
- •Extending/customizing SBN to pass messages to computers
 - Computers with multiple interfaces act as a "bridge" to CPUs that can't talk directly
 - "Protobetter" developed to manage packing/endian differences
- •Using SBN_lib to allow non-cFS node to communicate with cFS nodes
 - Allows non-cFS nodes to "impersonate" a cFS node and talk to SBN on other CPUs
- Worked to develop the CDD before the SW development was complete
 - Not treat CDD as an "as built" post-development documentation effort
 - Required iterations on data structures and MIDs, but minimized interface issues

	NASA	SUBJECT: Future Work	NAME: Robert Hirsh	
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		date: 12/03/2018	Page: 12

- The CCDD tool has successfully been used to automate/autocode a large amount of software used on Habulous
- Working to allow the CCDD to define even more products including
 - Time-triggered Ethernet (TTE) network tables/maps
 - »Coordinate message passing between various synchronized machines
 - cFS schedule table (for each CPU)
 - Automated CCDD to SysML export

