Robert Hirsh Robert.1.Hirsh@nasa.gov NASA/ Johnson Space Center 12/3/2018

ENGINEERING NASA	NASA	SUBJECT:	NAME: Robert Hirsh		
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch	Agenda	DATE: 12/03/2018	Page: 2	

- •AA2 Background
- •cFS Command and Data Dictionary (CCDD) Overview
- •CCDD Products used on AA2
- •Development on AA2
- •Next Steps

ENGINEERING NASA	NASA	SUBJECT: Ascent Abort 2 (AA-2)	NAME: Robert Hirsh	
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		DATE: 12/03/2018	Page: 3

- •AA-2 is a development flight test for Multi Purpose Crew Vehicle (MPCV)
 - Launch planned for May 2019 from Space Launch Complex 46
 - •AA-1 test was dropped, but AA-2 was not renumbered
 - Pad Abort 1 (PA1) demonstrated similar LAS functionality from a launch pad. (May 2010)
- Largely a test of the Launch Abort System (LAS) on Orion
 - Safety system to quickly separate crew capsule from the Booster (during a failure)
 - Verify LAS works under flight-like conditions to help certify system for crewed missions
- Two identical CPU's running, only 1 is required (redundancy)
 - Each CPU is cFS instance running on vxWorks (on a PPC)
 - Each CPU has separate serial link to the LAS, but only 1 is needed (redundancy)
 - Code is essentially identical on each computer, but each computer used a different value for each MID that it sends on the Software Bus (SB)

Apollo Pad Abort Test

Apollo Abort Test (Little Joe Ascent II Booster)

Orion PA-1 Test

AA-2 Flight Test Vehicle

AA-2 Avionics & Software

•Designed to use COTS avionics wherever possible

- •Dual string design using cFE/CFS on VxWorks
- •Reuse of ANTARES Trick Simulation

•CFS wrapped GNC Matlab/Simulink Autocode from mainline MPC♥

ENGINEERING	NASA	SUBJECT: CCDD Background	NAME: Robert Hirsh		
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		DATE: 12/03/2018	Page: 5	

- •CCDD stands for cFS Command and Data Dictionary
- •Goddard's Core Flight System (cFS) has been, is, and is intended to be used by many projects
 - Examples: Lunar Reconnaissance Orbiter (LRO), Morpheus, Exploration EMU (xEMU) spacesuit, Orion Backup Flight Software (BFS)
 - Success of the cFS concept is shown by the number cFS projects at FSW-2018
- •A command and data dictionary (CDD) defines telemetry/command messages
- Each cFS project must select a way to manage their CDD
 - Frequently involves using a spreadsheet, with custom SW to convert into useful files
- •cFS Command and Data Dictionary utility (CCDD) was designed as a generic utility to eliminate duplication of effort in order to make CDD management easier

JEC	NASA	SUBJECT:	NAME: Robert Hirsh		
ENGINEERING	Software Robotics & Simulation Division Spacecraft Software Engineering Branch	CCDD Goals	DATE: 12/03/2018	Page: 6	

- Create a configurable CDD utility that runs on multiple operating systems
 - Written in Java for maximum portability
- Easy creation/modification of CDD information
 - Graphical user interface (GUI) to interact with the database
- Store all CDD information into a standard database (postgreSQL)
- Bidirectional transfer of information to/from the CCDD
 - Cut-n-paste to Excel, import/export via XTCE/CSV/JSON
- Easy access to CDD information (via scripting languages and web applications)
 - Allows user to code in various languages (ruby/python/js) and access CDD information »Create vehicle and ground software products, data summary, etc
 - »Generate complicated CFS products: Schedule or network tables, copy table, etc

	NASA	SUBJECT: CCDD at a glance	NAME: Robert Hirsh		
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		DATE: 12/03/2018	Page: 7	

Data is accessible to scripting languages (JavaScript, Python, etc.)

• Example scripts provided for common products

ENGINEERING NASA	NASA	SUBJECT: CCDD Demo	NAME: Robert Hirsh		
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		DATE: 12/03/2018	Page: 8	

💁 CFS Command & Data Dictionary 1.4.1 🗆 🖉							
<u>F</u> ile <u>P</u> roject	<u>D</u> ata S <u>c</u> heduling <u>S</u> cript <u>H</u>	elp			Â.		
Project: Sam	npleProject						
Index	Server	Project	Date/Time	Туре	Message		
6248	5432	SampleProject	12:42:42.376	Success			
6266	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:42:42.584	Success	Project 'SampleProject' locked		
6269	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:42.488	Success	Project 'SampleProject' unlocked		
6270	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:42.489	Success	Project database 'sampleproject' closed		
6271	jsc-er-cfs01.jsc.nasa.gov 5432	*server*	11/27/2018 12:43:42.494	Success	Connected to server as user		
6272	jsc-er-cfs01.jsc.nasa.gov 5432	*server*	11/27/2018 12:43:42.494	Status	PostgreSQL: 8.4 *** JDBC: PostgreSQL 9.4.1207.jre7 (type 4)		
6273	jsc-er-cfs01.jsc.nasa.gov 5432	*server*	11/27/2018 12:43:45.022	Success	Server connection closed		
6278	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:45.060	Success	Connected to project 'SampleProject' as user		
6279	jsc-er-cfs01.jsc.nasa.gov 5432	SampleProject	11/27/2018 12:43:45.061	Status	PostgreSQL: 8.4 ≫≫ JDBC: PostgreSQL 9.4.1207.jre7 (type 4)		
4							
	Event filter: 🗌 All 📄 Command 🗹 Success 🗹 Fail 🗹 Status						

NASA Johnson Space Contor	SUBJECT: CCDD Products	CDD Products Robert	Hirsh
Software Robotics & Simulation Division	in AA-2	DATE:	Page:
Spacecraft Software Engineering Branch		12/03/2018	9

- •C header files defining SB command/telemetry messages
 - Define the structure for all software bus (SB) messages.
- MID file generation (Same file used by both CPUs)
 - Defines all the MIDs for each cFS message sent/received on each CPU
 - »CPU2 adds 0x100 to all the MID values sent out by CPU1
 - »Allows Ground SW to know which computer sent a message
- •HK copy table generation
 - Telemetry link is constrained. Select various parts of messages to go at different rates
 - 2 separate telemetry paths (per CPU), so 4 separate messages are sent
- •ITOS "rec" files (ground control system)
 - Used to define commands/messages in ITOS
- Data decom config files (post-flight data processing)
 - Provides CSV files with desired parameters to be analyzed
 - Custom built utilities to decode data from "raw" recorded telemetry files
 - »Significantly faster than data replay and seqprt utility in ITOS

ENGINEERING NASA	NASA	SUBJECT: Major AA-2 Activity in 2018	NAME: Robert Hirsh		
	Software Robotics & Simulation Division Spacecraft Software Engineering Branch		date: 12/03/2018	Page: 10	

- Worked to develop the CDD before the SW development was complete
 - CDD not treated as an "as built" post-development documentation effort
 - Required iterations on data structures and MIDs, but minimized interface issues
- •Added ability to track ~900 DFI system parameters (in addition to OFI)
 - Allows additional insight into vehicle for all ground controllers
- Automated data processing and "quicklook" of key parameters after tests
 - Allows rapid verification of how the system performs during simulation runs
- Automated regression testing to perform SW verification activities
 - Test framework consumed CCDD-generated files to define CCSDS messages
 - Can verify any parameter (of any messages) meets expected values (at specific times)
- •Automated remote control/monitoring of ground power supplies
 - Quite useful since people need to stay miles away during launch window

