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SIMULTANEOUS LOCALIZATION AND MAPPING FOR SATELLITE
RENDEZVOUS AND PROXIMITY OPERATIONS USING RANDOM

FINITE SETS

Lauren Schlenker∗, Mark Moretto†, David Gaylor‡, and Richard Linares§

Future space missions require that spacecraft have the capability to autonomously
navigate non-cooperative environments for rendezvous and proximity operations
(RPO). Current relative navigation filters can have difficulty in these situations,
diverging due to complications with data association, high measurement uncer-
tainty, and clutter, particularly when detailed a priori maps of the target object
or spacecraft do not exist. The goal of this work is to demonstrate the feasibil-
ity of random finite set (RFS) filters for spacecraft relative navigation and pose
estimation. The approach is to formulate satellite relative navigation and pose es-
timation as a simultaneous localization and mapping (SLAM) problem, in which
an observer spacecraft seeks to simultaneously estimate the location of features on
a target object or spacecraft as well as its relative position, velocity and attitude.
This work utilizes a filter developed using the framework of RFS which are well
suited to multi-target SLAM operations, avoiding data association entirely. Rel-
evant RPO scenarios with simulated flash LIDAR measurements are tested with
a Probability Hypothesis Density (PHD) RFS filter embedded in a particle filter
to obtain a feature map of a target and a relative pose estimate between the target
and observer. Preliminary results show that an RFS-based filter can successfully
perform SLAM in a spacecraft relative navigation scenario with no a priori map
of the target. These results demonstrate the feasibility of RFS filtering for space-
craft relative navigation and motivate future studies which may expand to tracking
space objects for space situational awareness, as well as relative navigation around
small bodies.

INTRODUCTION

There is a growing need for autonomous navigation solutions for spacecraft rendezvous and prox-
imity operations (RPO) to support small body exploration, satellite servicing and on-orbit assembly
and active orbital debris removal. However, reliable solutions are difficult to achieve due to the
challenges of operating in space. Noisy measurements that are cluttered with additional false detec-
tions can make a state estimation filter diverge if association between measurements and state space
cannot be performed quickly and correctly. Moreover, existing methods typically rely heavily on a
priori information about the target or known features such as fiducials.1–4 This information may not
be available in situations such as RPO with non-cooperative satellites or initial mapping of a pre-
viously unexplored asteroid or space debris. A reliable relative navigation solution for spacecraft
RPO must be able to perform despite these limitations.
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Satellite relative navigation can be formulated as a Simultaneous Localization and Mapping
(SLAM) problem, in which a robotic agent attempts to estimate a map of its environment at the
same time as its pose (position, velocity, and attitude) within that environment. With feature-based
SLAM methods, the robot’s sensors typically measure features in the environment, for RPO they
would be the location of points or edges on the body of a rendezvous target using sensors such as
cameras or LIDAR. In this way the mapping part of the SLAM problem becomes a multi-target
tracking problem, as the observer is attempting to estimate the location of many features in order to
construct a feature map of the target.

Many methods have been proposed to solve the multi-target SLAM problem and are summarized
by surveys of current SLAM methods5, 6 These existing methods however tend to be limited by the
fact that the underlying mathematics were originally intended for single-target tracking. In order
to use the same methods for multi-target tracking, heuristic methods must be used to account for
additional challenges introduced by multi-target tracking. Among the most significant of these
challenges is the data association problem, where measurements must be matched to features in
state space so that an estimation filter can be used for navigation. False sensor returns can make it
difficult to assign a measurement to a feature prior to filtering; some sort of heuristic must be used to
decide how to assign measurements to expected features despite having extraneous measurements
available. Conversely, a filtering algorithm must be able to take into account the fact that a sensor
may fail to detect a feature that is expected, which commonly occurs with optical measurements
due to difficult lighting conditions such as those found in space. With a low number of features and
measurements, heuristic methods may suffice for solving these problems on a case by case basis.
However, as the number of features and measurements increases, as in a realistic environment,
the data association problem becomes computationally challenging and the filters that rely on this
problem being solved are prone to diverge if the association is performed incorrectly.7

One of the most widely used feature-based SLAM algorithms is FastSLAM, in which the feature
map is estimated by an Extended Kalman Filter (EKF) and the corresponding trajectory and pose is
estimated with a particle filter.8 FastSLAM is a powerful approach because there is no Gaussian as-
sumption on the pose probability distribution, allowing for highly non-linear problems to be solved;
moreover, real-time implementations of FastSLAM have been achieved.9

Several past studies have focused on using SLAM methods for spacecraft rendezvous and prox-
imity operations. Work by Augenstein as well as Sonnenburg et. al. has demonstrated that the
spacecraft RPO problem can be appropriately handled by a SLAM formulation.10, 11 However, in
both cases feature management and data association must be performed before measurements are
passed to the filter, and no concept of realistic measurement situations such as features passing in
and out of the field of view, clutter (extra measurements), or missed-detections exists in these for-
mulations. These difficult aspects of a realistic SLAM problem are crucial to the success of the filter.
Similarly, Cocaud and Kubota used an algorithm based on an improved particle filtering method in-
tended for navigation and pinpoint landing on small celestial bodies.12 Though these results address
issues with drift common to particle filter based SLAM algorithms such as FastSLAM, the underly-
ing approach is still heavily based on heuristic methods for data association of observed landmarks
from frame to frame. From these studies, we see that although the formulation of multi-target track-
ing for spacecraft RPO as a SLAM problem is feasible, an efficient and reliable method which does
not rely on heuristic methods for data association and map management is still needed.

Recently, a new family of filters has emerged that is formulated in such a way that the difficulties
introduced by multi-target tracking can be directly incorporated into the mathematics of the filter,
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negating the need for an intermediate data association step or other heuristics for feature manage-
ment. Random Finite Set (RFS) filters use a set-based mathematical framework, as compared to
the random vector framework seen in traditional Kalman filter based methods. This is a powerful
way of formulating the filter because it more naturally describes the kinds of realistic dynamic and
measurement situations that occur in multi-target tracking problems.

The first RFS filter was proposed by Ronald Mahler in the early 2000’s, called the Probability
Hypothesis Density (PHD) filter.13 Since the initial PHD filter, several variants of RFS filters have
been proposed that address additional realistic implementation aspects of the PHD filter in ground-
based and underwater robotics.14 Previous studies by Mullane, et. al., have shown that a feature
based map is fundamentally a finite set, and is thus better represented and manipulated with RFS
methods.7 Their results show that in the presence of uncertain dynamics and measurements and
high degrees of clutter, the PHD filter significantly outperforms EKF-based mapping filters as well
as FastSLAM.

These studies have shown that RFS-based methods such as the PHD filter are a promising ap-
proach for handling the difficulties inherent to multi-target tracking. However, the authors are not
aware of any previous application of RFS-based methods to spacecraft relative navigation. Thus,
the goal of this work is to demonstrate that an RFS-based Bayesian SLAM approach is appropriate
and effective for the spacecraft RPO problem.

This paper begins by introducing the basics of RFS theory to explain why this type of mathematics
is more naturally suited to SLAM for RPO. The original PHD filter is shown, and the results of a
derivation for a tractable recursion called the Gaussian Mixture PHD filter is given. The RPO
simulation setup and system dynamics are described, and a flash LIDAR measurement model is
given. An approach for using the PHD filter with an outer Rao-Blackwellized particle filter is
proposed to perform SLAM, and two relevant RPO scenarios are tested with the filter, processing
simulated measurements.

THEORY

The Probability Hypothesis Density Filter

The goal of multi-target tracking is to jointly estimate the number of features present in state
space as well as their states given a set of noisy, cluttered measurements. We assume that at time
step k, there exists a set of N(k) features and M(k) measurements. Since in general there is no
particular order in which we know these states and measurements must be associated, we represent
them as finite sets:

Xk = {xk,1, ..., xk,N(k)} (1)

Zk = {zk,1, ..., zk,M(k)} (2)

Thus in the RFS framework, the set of features Xk and set of measurements Zk are a multi-
target state and multi-target observation. Analogously to random vectors used for single-target
tracking, Xk and Zk are random finite sets, or finite-set-valued variables which are characterized by
a probability distribution and a family of joint probability densities of the elements of X and Z.15

Formulating our state in this way allows for a more generalized set of options for the time evolu-
tion of states. For a given multi-target state Xk−1, each element (which shall hereon be referred to

3



as a feature per the SLAM application intended) xk−1 ∈ Xk−1 either continues existing at the next
time step k (the probability of this happening is pS,k), or ceases to exist (with probability 1− pS,k).
Alternatively, a new feature may occur independently of existing features (i.e., be birthed into state
space,) or appear by spawning from an existing feature. In terms of realistic scenarios, these options
may occur because a feature is entering the field of view, or was previously obscured by an existing
feature.

Thus at a time step k, we denote our set of feature states as:

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1(ζ)

 ∪
 ⋃
ζ∈Xk−1

Γk|k−1(ζ)

 ∪Bk (3)

where Xk is composed of a union of a set of surviving features Sk|k−1 each with transition density
fk|k−1(xk|xk−1), a set of newly birthed features Bk, and a set of spawned features Γk|k−1 . Note
that Γ and B are entirely general and can be determined by the specific scenario involved.

Similarly, the RFS measurement model is able to take into account probabilities of detection and
clutter. A feature xk ∈ Xk can either be detected (with probability pD,k,) or missed (with probability
1 − pD,k). Additionally, the framework of RFS allows for the concept of clutter measurements,
which we shall represent as an additional RFS Kk of false detections which do not originate from a
feature.

Thus, our set of measurements at a time step k is denoted as:

Zk = Kk ∪

 ⋃
x∈Xk

Θk(x)

 (4)

where Zk is composed of a union of sets of actual measurements Θk(x) which occur with probabil-
ity density gk(zk|xk) and clutter measurements Kk. Kk is also entirely general and determined by
the specific scenario involved.

The goal of multi-target filtering is to obtain a posterior density of the multi-target state Xk given
the multi-target observation Zk. The posterior density can be calculated using a Bayesian recursion
given by:

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)pk−1(X|Z1:k−1)µs(dX) (5)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|X)pk|k−1(X|Z1:k−1)µs(dX)
(6)

where fk|k−1(·|·) is a transition density from one state to another, gk(·|·) is the observation likeli-
hood of a measurement given a state; µs is an appropriate reference measure on the collection of all
finite subsets of state space.16

The recursion in equations 5-6 for calculating the multi-target posterior density is computationally
intractable due to the set integrals required. In order to approximate this recursion, we will instead
choose to propagate the posterior intensity, which is the first order statistical moment of the multi-
target state. This is the basis of the Probability Hypothesis Density filter.13 A key characteristic of
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this choice is that the integral of the intensity function over some region of state space is equal to
the number of features expected in that region of state space, thus allowing for joint propagation of
the number of expected features at each time step. In other words, N̂(k) =

∫
ν(x)dx, where the

intensity function ν(x) is referred to as the probability hypothesis density.

From this point, a number of assumptions are made in order to obtain the PHD recursion from
equations 5-6. Each target is assumed to evolve and generate observations independently of one
another. Clutter is assumed to be Poisson and independent of target-originated measurements. The
predicted multiple-target RFS governed by pk|k−1 is assumed to be Poisson. Each target is assumed
to follow a linear Gaussian dynamical model and the sensor is assumed to obey a linear Gaussian
measurement model. The survival and detection probabilities are state independent and the intensi-
ties of the birth and spawn RFSs are modeled as Gaussian mixtures.16

The PHD recursion is then as follows:

vk|k−1(x) =

∫
pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ +

∫
γk|k−1(x|ζ)vk−1(ζ)dζ + βk(x) (7)

vk(x) = [1− pD,k(x)]vk|k−1(x) +
∑
z∈zk

pD,k(x)gk(z|x)vk|k−1(x)

κk(z) +
∫
pD,k(ξ)gk(z|ξ)vk|k−1(ξ)dξ

(8)

where γk|k−1 is the intensity function of the RFS of spawned states Γk|k−1, βk is the intensity
function of the birth RFS Bk, and κk is the intensity function of the clutter RFS Kk. Additionally,
the probability of detection pD,k is now incorporated.

It is worth noting that the PHD recursion in equations 7 and 8 requires no data association be-
tween measurements and features, negating the need for expensive combinatorial computations.
Unfortunately, no closed-form exists for the PHD recursion.13, 14, 16

Gaussian Mixture PHD

In order to produce a tractable, closed form recursion, linear Gaussian dynamics and measure-
ment models are assumed. All subsequent theory presented here to enforce this assumption closely
follows the derivation of Vo and Ma, and the interested reader is encouraged to reference their
work.16 A linear Gaussian multi-target model includes assumptions not only for existing features
but also for birth, death, and detection of new features. Additionally, it assumes that individual
features follow linear Gaussian dynamics and measurement model similar to a classic Kalman filter
setup:

fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1) (9)

gkz|x = N (z;Hkx,Rk) (10)

where in generalN (·;m,P ) represents a normal Gaussian distribution with meanm and covariance
P , Fk−1 is the state transition matrix, Hk is the measurement model observation matrix, and Rk is
the covariance of the measurement noise.

We also assume that the birth and spawn intensities are Gaussian mixtures:

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k) (11)
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βk|k−1(x|ζ) =

Jβ,k∑
j=1

w
(j)
β,kN (x;F

(i)
β,kζ + d

(j)
β,k−1, Q

(j)
β,k) (12)

where Jγ,k, w
(i)
γ,k, P

(i)
γ,k are given model parameters that determine the shape of the intensities and

can be chosen depending on the scenario, allowing for the inclusion of a priori knowledge of the
targets if desired or available.

Additionally, we assume that the posterior intensity at a previous time step k−1 is also a Gaussian
mixture:

νk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1) (13)

The end result of the use of these assumptions is the following computationally tractable recur-
sion, where the predicted intensity at time k is also a Gaussian mixture consisting of the sum of
surviving, spawned, and birthed features:

vk|k−1(x) = pS,k

Jk−1∑
j=1

w
(j)
k−1N (x;m

(j)
S,k|k−1, P

(j)
S,k|k−1) + vβ,k|k−1(x) + γk(x) (14)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1

where the intensity of spawned features depends on the set of previously existing features:

vβ,k|k−1(x) =

Jk−1∑
j=1

Jβ,k∑
`

w
(j)
k−1w

(`)
β,kN (x;m

(j,`)
β,k|k−1, P

(j,`)
β,k|k−1) (15)

m
(j,`)
β,k|k−1 = F

(`)
β,k−1m

(j)
k−1 + d

(`)
β,k−1

P
(j,`)
β,k|k−1 = Q

(`)
β,k−1 + F

(`)
β,k−1P

(j)
β,k−1(F

(`)
β,k−1)

T

Then, the measurement updated posterior is also a Gaussian mixture:

vk(x) = (1− pD,k)vk|k−1(x) +
∑
z∈Zk

vD,k(x; z) (16)

where the intensity of detected features is:

vD,k(x; z) =

Jk|k−1∑
j=1

w
(j)
k (z)N (x;m

(j)
k|k(z), P

(j)
k|k) (17)

m
(j)
k|k(z) = m

(j)
k|k−1 +K

(j)
k (z −Hkm

(j)
k|k−1)

P
(j)
k|k = [I −K(j)

k Hk]P
(j)
k|k−1

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k +Rk)

−1
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and where the weight of each element of the Gaussian Mixture is given by:

w
(j)
k (z) =

pD,kw
(j)
k|k−1q

(j)
k (z)

κk(z) + pD,k
∑Jk|k−1

`=1 w
(`)
k|k−1q

(`)
k (z)

q
(j)
k (z) = N (z;Hkm

(j)
k|k−1, Rk +HkP

(j)
k|k−1H

T
k )

At this point, equations 14-17 give a tractable closed-form solution for the GM-PHD filter for
taking noisy cluttered measurements and extracting an intensity function which represents likely
feature positions in state space. It is very similar to the form of the Kalman filter, but is more
general due to the RFS formulation. A thorough example of pseudocode for an implementation of
this recursion can be found in the book by Mullane et. al.7

A note on implementation: at time k, the Gaussian Mixture produced by the recursion has
O(Jk−1|Zk|) terms, and this number increases without bound. A good approximation of the GM-
PHD can still be obtained by pruning out elements of the GM whose weight falls below a certain
tunable threshold. A simple method for performing this pruning is given by Vo and Ma.16 This step
is simple but crucial to achieving good filter performance.

Extended Kalman GM-PHD

Similar to how the Kalman filter can be extended to nonlinear dynamics and measurement mod-
els, Vo and Ma have shown that we can also use nonlinear dynamics and measurements by locally
linearizing the state transition matrix and observation matrix. Thus, assuming dynamics and mea-
surement models of the form:

xk = φk(xk−1, νk−1) (18)

zk = hk(xk, εk) (19)

where φk and hk are known nonlinear dynamics and measurement models respectively, allowing
for zero-mean Gaussian process noise νk and measurement noise εk, with covariances Qk−1 and
Rk respectively. Then, the state transition matrix can be calculated as:

F
(j)
k−1 =

∂φk(xk−1, 0)

∂xk−1

∣∣∣∣
xk−1=m

(j)
k−1

(20)

Similarly, the observation model derivative matrix can be calculated as:

H
(j)
k =

∂hk(xk, 0)

∂xk

∣∣∣∣
xk=m

(j)
k|k−1

(21)

Particle Filter

In order to demonstrate the usefulness of an RFS-based filter for spacecraft RPO, the work in this
paper replaces the EKF portion of FastSLAM with a PHD filter. The GM-PHD filter in equations
14-17 is used to perform the Mapping part of SLAM, with a similar approach to that of Vo and Ma.16

In order to perform Localization and obtain a relative pose estimate of the observer, the map from
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the PHD filter is used. Based on the work by Mullane et. al., the localization step is performed with
a particle filter outer loop.7 A basic flowchart of the algorithm showing the relationship between the
GM-PHD filter and the particle filter is presented in Figure 1.

Simulate 
Measurements

Birth New 
Features from 
Measurements

Propagate 
Dynamics and 

Predict

PHD 
Measurement 

Update

Prune Low 
Weight 

Features

Zk

Xbirthed

Xk-1

Xk|k-1

Xk wk
Weighted Pose 
Estimate from 

Particles

Outer Particle Filter

Inner 
PHD 
Filter

Relative 
Pose 

Estimate:
Position
Velocity
Attitude

Figure 1: Filter Structure Overview: a PHD filter is wrapped inside a particle filter. Each particle
has a PHD filter that processes a map based on a pose hypothesis.

Each particle carries a separate hypothesis of the pose and a corresponding map estimate from
the PHD filter that is conditioned on the pose hypothesis. Thus, it is logical to weight each particle
based on how closely the map and pose estimate match with the set of measurements. To do this, an
importance weight p(Zk|Xk, Z1:k−1) must be calculated for each particle. There are many different
methods for performing particle importance weighting, each with varying levels of computation
required.17 Single Cluster importance weighting is used in this approach for its low computational
complexity and because the setup of the multi-target problem can be loosely approximated as a
single-cluster Poisson process.18 The updated weight η[l]k of the lth particle is then calculated from
the previous map PHD ν

−[l]
k as:

η
[l]
k = exp

N(k)−[l]∑
r=1

w
r,[l]
k

× ∏
z∈Zk

κ(z) + pD

N(k)−[l]∑
r=1

p
(
z|N r,[l]

k , x
[l]
0:k

)
w
r,[l]
k

 η
[l]
k−1 (22)

The relative pose estimate is then updated by extracting the pose of the particle with the highest
weight prior to resampling. Alternatively, a weighted average pose estimate could be obtained
using all available particles.

Along with importance weighting, any particle filter implementation requires some amount of
computation to keep the particle hypotheses in high probability regions of the posterior. In order
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to accomplish this simply, we use Low Variance Resampling to resample our particle hypotheses
whenever the number of effective particles (calculated with the sum of the squared particle weights)
falls below a user-specified threshold.19

SIMULATIONS

This section describes the simulation used to provide an initial demonstration of the feasibility of
RFS filtering for spacecraft RPO including the problem setup, system dynamics, and measurement
model.

Problem Setup

Figure 2 depicts the spacecraft RPO scenario to be studied and defines relevant coordinate frames
and vectors. In general, the observer spacecraft is taking measurements of features located on
a target which could be a cooperative or non-cooperative spacecraft, or a small body such as an
asteroid. These features would typically be “optically significant” features such as edges or corners
of a solar panel, or craters on an asteroid.

Figure 2: Relationship between observer and target coordinate frames and vector definitions.

The target has a body-fixed frame {B} which we have defined to be the same as the Hill frame
used to later define the relative orbital dynamics. The observer has a primary body-fixed frame
{P}, which is defined to be the same as the frame in which measurements are taken in order to
simplify the measurement equations. Various features are located in the rigid body frame {B} –
the ith feature located on the target can be located by a vector from the origin of the B frame to the
feature.

A measurement of the ith feature is obtained in the {P} frame. Each measurement yi is related
to the relative position of the {P} frame with respect to the {B} frame, as well as the relative
orientation of the {P} frame with respect to the {B} frame, represented by [PB].

In order to propagate the dynamics, the state of interest is defined to be x = [rP/B, ṙP/B,σ]T ,
where rP/B is the relative location of {P} with respect to {B}, ṙP/B is the relative velocity of {P}
with respect to {B}, and σ contains the Modified Rodrigues Parameters required to describe the
rotation [PB] between a vector in {P} and a vector in {B}.
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The output of the filter is an estimate of the position, velocity, and orientation of the observer rela-
tive to the target represented by rB/P, ṙB/P and a rotation matrix [BP] = [PB]T which is calculated
from the Modified Rodrigues Parameters.

System Dynamics

The target body is assumed to be in a circular orbit about the Earth. The observer is operating in
close proximity to the target. Therefore, the dynamics of the observer relative to the target can be
described by the Clohessy-Wiltshire (CW) equations.20

In the Hill frame {B}, the elements of rP/B are defined by the following dynamics:

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ

z̈ = −n2z
(23)

where n is the target’s mean motion defined as n =
√
µ/a3, µ being the planet’s gravitational

parameter and a being the semi-major axis of the target’s orbit.

To simplify the dynamic equations needed to calculate equations 18 and 20, the motion is con-
strained such that the attitude of the rigid-body target is fixed in the Hill frame, similar to a nadir
pointing spacecraft. We also assume that the observer is perfectly tracking the target with its sen-
sor pointed at the target, which is a reasonable assumption given an appropriate control system
for pointing. This negates the need to estimate angular velocity, since the angular velocity of the
observer body frame with respect to the Hill body frame is defined as:

ω =
r× ṙ

|r|2
(24)

The relative attitude of the observer and target is expressed using Modified Rodrigues Parameters
(MRPs) because they only have one easily avoidable singularity. The MRPs obey the kinematic
differential equation:21

σ̇ =
1

4

[
(1− |σ|2)[I3×3] + 2[σ̃] + σσT

]
ω (25)

where [σ̃] is the skew symmetric matrix composed of the elements ofσ. Equations 23 and 25 dictate
the dynamics used for calculating equations 18 and 20.

The target is assumed to be spherical with a radius of 50 meters and covered with 20 randomly
distributed features on its surface. Note that though the true features are constrained to be on the
surface of a sphere, this information is not given directly to the filter. A spherical shape was chosen
to simplify determining whether or not a simulated feature is visible to the sensor.

Though the CW equations are linear and have an analytical solution, they are integrated numer-
ically along with the MRPs using Matlab’s ode45 integrator to generate the truth trajectory and to
propagate trajectories within the filter in order to easily increase the fidelity of the dynamics model
in future studies.
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Measurement Model

In this scenario, the observer spacecraft takes measurements of the target spacecraft with a flash
LIDAR. We simulate noisy flash LIDAR measurements from the truth trajectory to feed to the filter,
as well as extraneous measurements which do not originate from features on the target. Although
the filter is capable of handling missed detections, this was not simulated for this study.

In order to focus on the implementation of the filter, it is assumed that features are obtained
from a front end feature extraction algorithm such as Scale-Invariant Feature Transform (SIFT)
or Speeded-Up Robust Features (SURF), which would provide these feature locations from image
data22, 23 or LIDAR data.24 Thus, each measurement of a feature consists of angular position in
pixel coordinates and a range. Furthermore, the features have no other identifying information, i.e.
the filter doesn’t receive any information about which feature a particular measurement originated
from.

The flash LIDAR measurements are simulated using a pinhole projection for the pixel coordinates
and the Euclidean distance from the optical center to the feature for the range. For the camera
projection the camera frame is defined where the x and y axes are aligned with the rows and columns
of the detector and the third axis points along the boresight of the optics. Pixel coordinates are
defined in the camera frame as {u, v, w}. The measurements passed to the filter are thus y =
[u v ρ]:

x̃ =

[
u
v

]
(26)

ρ = ‖X−Xc‖ (27)

where X is the feature location and Xc is the camera location in the same frame, in this case the
Hill frame previously defined as {B}.

To calculate x̃ a pinhole camera projection is defined with the following standard equations:

x = w

[
x̃
1

]
=

wuwv
w

 (28)

where x is calculated as:

x =

fmu s Pu
0 fmv Pv
0 0 1

 [R][[I3×3,−Xc]

[
X
1

]
(29)

where [R] is the rotation matrix from the Hill frame to the camera frame, f is the focal length of
the optics, s is the skew of the camera, Pu and Pv are the location in pixels of the optical center
on the detector, and mu and mv are the inverse sizes of the pixels in each dimension.25 Equations
26-28 dictate the measurement model used for calculating equation 19 and the observation matrix
in equation 21.

Noise and uniformly distributed clutter are added after truth measurements are calculated. If a
measurement with noise is outside the bounds of the model then it is disregarded. The constants
used to simulate these data are included in Table 1. These values were chosen to produce an angle of
view of approximately 14◦, and closely mimic the specifications of the flash LIDAR onboard Raven,
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a module on the International Space Station which performs autonomous tracking of rendezvous
targets.26

Table 1: Measurement model parameters.

Constant Value Units

f 25 mm

Pu, Pv 128 []

s 0 []

mu,mv 20480 m−1

ncol, nrow 256 []

σu, σv 1 []

σρ 10 m

nclutter 10 []

ρmax 750 m

An example of the measurements being passed to the filter is shown in Figure 3. At each time
step, 10 clutter measurements are appended to the true measurements. Note that this clutter is not
persistent, i.e. it does not remain in physical space across time steps, however that could be simu-
lated for future work.

Figure 3: A simulated example of features extracted from flash LIDAR observations, given as
measurements to the filter. The measurements on the left show the cluttered, noisy measurements
given to the filter, while measurements on the right are the “true” measurements corresponding to
the true location of features.

RESULTS

To test the filter, two test cases with relevant RPO dynamics were simulated. In both cases, the
birth model γk(x) for the PHD filter is given to be a Gaussian Mixture with means located at the true
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target locations and covariance of 1 meter. The birth model could also be chosen to be a uniform
distribution such that all features are birthed with the same weight which does not depend on the
location in space, giving the filter no a priori knowledge – simulations with a uniform birth model
are in progress. Since feature spawning is not expected to occur in this particular scenario (though
it is allowed to occur in general,) no spawn intensity function is specified.

For the particle filter, 100 particles are used. The pose hypotheses of the particles are initially
distributed slightly offset from the true state with a small covariance in order to focus on primarily
testing the mapping portion of the PHD filter but also allow for initial particle dispersion.

Case 1: Walking Safety Ellipse

The relative trajectory of the observer for the first case is shown in Figure 4. This trajectory brings
the observer to within 30m of the surface of the target, and as far away as 650m.

Figure 4: Observer trajectory in the Hill frame for Case 1. Red x’s on the target body indicate the
location of features to be estimated. Trajectory shown is over 15,000s.

Figure 5 shows the results of the PHD filter for the highest weight particle at 4 selected time
steps. The red x’s show the true feature locations on the target body, and the blue dots show the
features that are estimated by the PHD filter. From these results it is clear that the PHD filter is not
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only determining the feature map from the very first time step, but the map continues to be updated
as features move in and out of the field of view as the observer sees different sides of the target.
Moreover, when measurements become sparse such as at 1400 seconds, the filter is able to recover
and maintain a stable map estimate.

Figure 5: Sequential snapshots of the estimated feature map from the PHD filter over time for Case
1; the map shown is from the particle with the highest weight at that time step.

Figure 6 depicts the number of true features visible to the observer compared to the number of
features obtained by the PHD filter. For a well-tuned filter, these two curves should be close over
time. This figure shows that the estimated number of features closely tracks the truth. Additional
features could be pruned out with further tuning, depending on the weight threshold chosen. The
tuning chosen here was to favor more features in order to maintain a non-zero number of features at
all time, as the filter currently discards features after they are no longer being tracked.

Figure 7 shows the resulting position and velocity errors compared to the sample covariance 3σ
bounds of all the particle poses, as well as the Euler angle differences between the true and estimated
relative attitude. These results show that the covariance bounds are reasonable for the amount of
estimation error, and the pose is being tracked to within a few meters in relative position and cm/s
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Figure 6: Comparison between the true number of visible features vs. how many features the PHD
filter has estimated for Case 1.

in relative velocity, and generally less than one degree of error in relative attitude.

Figure 7: Comparison between sample covariance 3σ bounds vs. the position and velocity errors for
Case 1. Note that there is no sample covariance for the Euler angles, as these have been converted
from MRPs, where the concept of a sample covariance is nonexistent.

Case 2: Elliptical Orbit

Case 2 is a repeating elliptical orbit, shown in Figure 8. This case was chosen to see how the
filter responds to periodic map information, as well as how the filter performs over a longer period
of time.

Figure 9 shows the results of the PHD filter mapping step for Case 2. This case was tuned to be
slightly less strict about allowing features to be accepted as “real.” From the first time step, the map
is fully tracked; as time progresses the features continue to be observed over a long period of time.

Figure 10 depicts the number of true features visible to the observer compared to the number of
features obtained by the PHD filter. The periodic nature of the orbit can be seen in these results.
Additionally, the less strict pruning of the features is seen as the filter consistently overestimates
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Figure 8: Snapshot of the observer trajectory in the Hill frame for Case 2. Red x’s on the target
body indicate the location of features to be estimated.

Figure 9: Sequential snapshots of the estimated feature map from the PHD filter over time for Case
2; the map shown is from the particle with the highest weight at that time step.

how many features are visible. Further tuning would make it possible to improve these estimates,
as well as implementing the merging procedure specified by Vo and Ma.16
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Figure 10: Comparison between the true number of visible features vs. how many features the PHD
filter has estimated for Case 2.

Figure 11 shows the position and velocity errors compared to the sample covariance 3σ bounds
of all the particle poses. Again, the black line shows the difference between the true and estimated
pose, and the red dashed line shows the 3 σ bounds of the 100 pose hypotheses. The periodic nature
of the orbit is seen in the covariance bounds. In some dimensions, the filter appears to converge on
the correct pose as time progresses, showing that the particle filter approach has potential for good
pose estimation.

Figure 11: Comparison between sample covariance 3σ bounds vs. the estimate error for Case 2.

CONCLUSION

Our simulations have shown that RFS-based filters are feasible for performing relative naviga-
tion and pose estimation for RPO. The RFS formulation incorporates realistic dynamics and mea-
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surement scenarios directly into the mathematics. Our formulation required limited to no a priori
knowledge of the environment, and no pre-filtering data association was required to match state es-
timates to measurements. Further work is needed to analyze filter robustness to initial conditions as
well as various levels of initial uncertainty. Since the particle filter for pose estimation is susceptible
to divergence, future work is also needed to improve or replace the particle filter.
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