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Summary:

• Autonomous spacecraft relative navigation: a necessary requirement of future exploration/servicing missions.

• Challenging environments: no a priori map, need to track multiple features using measurements that can be noisy, 

have extraneous measurements (clutter), and missed detections.

• Random Finite Set based filters: a recent development, specifically formulated for these kinds of problems.

• Initial simulations: first known demonstration of a Random Finite Set based filter for spacecraft pose estimation and 

mapping.
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• Future of space exploration missions: spacecraft must be 
able to autonomously navigate their environment.

• Rendezvous with non-cooperative satellite (satellite servicing).
• Satellite swarms/formation flying.
• Small body missions (asteroids, comets).

• This is a hard problem:
• Challenging dynamics 
• Multi-Target Tracking: many things to track
• Measurement Limitations/Issues:

• Lighting conditions
• Features enter/exit FOV
• Extraneous measurements (clutter)
• Missed detections

• Lack of a priori information
• No a priori map or a priori map has significant uncertainty

Credit: NASA, Restore-L
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• Solution: Formulate as a Simultaneous Localization and Mapping (SLAM) problem.
• Localization = estimating observer’s pose (position, velocity, attitude relative to client)
• Mapping = estimating feature map (points or edges on a client – spacecraft or asteroid) 
• Simultaneously: pose depends on the map and vice versa

• More Problems: Traditional SLAM methods often diverge due to issues with data association, high uncertainty.

• False sensor returns (clutter.)

• Missed detection of expected features.

• Map features entering/exiting Field of View.

Measurements: Features on 
target extracted from optical 
image, LIDAR range to features

• Problem: Estimate location and rates of observer relative to client.

Credit: Kulumani, 2017Features extracted from 
an asteroid image.
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Block Diagram:
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• The Kalman Filter was originally developed for single-target tracking. Must associate 

measurements with targets outside of the filter.

• Heuristic methods have been used with the Kalman Filter to handle multi-target tracking.

• Divergence if association is wrong.

• Computationally expensive – especially as number of targets/measurements increases. 
• For 12 features and 20 measurements, data association matrix is 43GB, Matlab won’t even initialize ☹

States: t = k-1 Measurements: t = k-1 States: t = k Measurements: t = k

Extra “clutter” 
measurements, so how do 
you match measurements 
and targets?

How do you know what moved where? 
What if something new entered? What if 
something from before left?

What if you fail to detect 
some things?

Big Problem: Data association is hard.
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Reformulate: Ditch vectors, use sets – more natural, unified framework

Random Vectors:

Random Finite Sets:

True States: Measurements:

Doesn’t matter which order you put elements in, it’s still the same set. 
This is very powerful, if you have math to manipulate sets (we do.)



NASA Goddard Space Flight Center
MISSION ENGINEERING AND SYSTEMS ANALYSIS DIVISION 8

Motivation Problem Setup RFS Theory PHD Filter Test Case Results Conclusions

• Random Finite Sets (RFS) are a more natural way of formulating the general SLAM problem. 

• Vector-based formulation: existing target expected to continue to exist, and expected to be measured. 

• RFS formulation: other general propagation and measurement situations can be handled directly.

• No data association required between measurements and targets!

• Dramatically reduces computational complexity, no chance of diverging due to incorrect association.

These other “options” usually 

prevent traditional SLAM 

approaches from converging.

• No prior knowledge of the 

environment required!

• Ideal for non-cooperative 

rendezvous scenarios, no map of 

the target may be available.
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• Probability Hypothesis Density Filter (PHD Filter):
• Proposed by Mahler in the 1990’s, has been used for ground and naval robotics since the early 2000’s

• Very similar to Kalman Filter:

• Optimal Bayes Filter

• Linear Gaussian dynamics and measurement models

• Equations are set theoretic analogs to Kalman filter prediction and update steps

• The differences make it more general and flexible for multi-target tracking in realistic environments:

• Can model probabilities of detection/survival, clutter, etc. directly in the mathematics

• Add a set of “clutter” to your measurement set

• Add a set of “birthed targets” to your state set
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RFS-SLAM Filter Structure:

PHD filter wrapped inside a particle filter
• Pose is represented by particles

• Mapping: PHD filter determines which cluttered, 

noisy measurements correspond to actual map 

features. 

• Each particle’s feature map is conditioned 

on a different pose.

• Localization: Quality of each feature map 

determines the “weight” of each particle (wk).

• Weighted average of pose can be 

calculated.

• Alternatively, maximum a posteriori

estimate.
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Max Distance:
620m

Min Distance:
81m

• Target: Sphere, radius 50m, with randomly distributed features

• Chosen to simplify simulation of feature occlusion

• Simple dot products to determine which simulated measurements are visible

• Observer: Attitude assumed to always point at target

• Attitude control keeps target centered in sensor field of view (assumed perfect)

• Orbital Dynamics: Clohessy-Wiltshire equations for relative motion

• Target attitude is constant in the CW frame

• Attitude: Modified Rodrigues Parameters 

• 1 easily avoidable singularity 

• Measurements: flash LIDAR (simulated)

• 256x256 pixel image, 14° Angle of View (similar to Raven) 

• Features = pixel coordinates and range relative to boresight

• Estimation: in target body-fixed frame

• Map = body-fixed feature locations (static)

• Pose = observer position, velocity, attitude relative to target
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Measurement Noise: [1 pixel, 1 pixel, 10 mm]

Note: This video shows the image plane; range measurements are also used, 
but are difficult to visualize.

Click to Play Video -- newMeasModel.avi

http://drive.google.com/file/d/1fhy7fGjEGiVLdw8I35rtyyyHqCCwxFnI/view
http://drive.google.com/file/d/1fhy7fGjEGiVLdw8I35rtyyyHqCCwxFnI/view
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Number of Particles Used: 100

Case 1: Nominal Orbit

If the filter is well-tuned, the cardinality of the PHD 
will closely match the number of visible features. 

Click to Play Video -- Case1.avi

http://drive.google.com/file/d/145m6Kv0_1hZV7HTi3J67Y-Z6TIjw5KgG/view
http://drive.google.com/file/d/145m6Kv0_1hZV7HTi3J67Y-Z6TIjw5KgG/view
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Pose estimate stays well within sample covariance 3σ bounds, and 
estimated trajectory matches the truth very closely. 

Case 1: Nominal Orbit
Estimate Error                     3σ Bound

Pose Estimate Error vs. Sample Covariance 3σ Bounds



NASA Goddard Space Flight Center
MISSION ENGINEERING AND SYSTEMS ANALYSIS DIVISION

Motivation Problem Setup RFS Theory PHD Filter Test Case Results Conclusions

Case 2: Periodic Planar Orbit

Goal: Test filter stability over a longer 
period of time.
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Difference between # of tracked and true targets is 
periodic with the orbit; filter has been tuned to 
slightly overestimate # of targets for stability.

Number of Particles Used: 100

Case 2: Periodic Planar 
Orbit

Click to Play Video -- Case2.avi

http://drive.google.com/file/d/1Ype0ZZN5zDWIDkVdzkSrS61ByP7MxxIG/view
http://drive.google.com/file/d/1Ype0ZZN5zDWIDkVdzkSrS61ByP7MxxIG/view
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Estimate Error                      3σ Bound

Pose Estimate Error vs. Sample Covariance 3σ Bounds

Pose estimate stay within sample 
covariance 3σ bounds, and estimated 
trajectory matches the truth very closely 
over a long period of time. 

Case 2: Periodic Planar Orbit
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• We have shown using a particle filter that a Probability Hypothesis Density RFS filter can feasibly perform 

SLAM in a realistic noisy, non-cooperative space environment.

✓ First known demonstration of RFS SLAM methods for spacecraft pose estimation and mapping.

✓ Mapping is successful (features are tracked.); Localization is successful (pose is estimated.)

✓ Very little/no a priori knowledge of the map given to the filter.

✓ No data association required between states and measurements.

✓ Very little post-processing for feature management.

✓ Heavily cluttered, highly noisy measurements used.

✓ Features move in and out of the sensor field of view.

• Pose estimate quality is dependent on the number of particles used in the outer particle filter.

• More particles is better, but computationally costly. 
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Moving Forward:
• Investigate computationally cheaper ways of extracting a pose estimate

• e.g. EKF localization from the PHD map, Multi-Bernoulli RFS filter variants.

• More feasible for onboard computers.

• More Complicated Dynamics

• Higher fidelity dynamics, no constraint on pointing.

• Real Life Data

• Use optical images and LIDAR measurements from existing 

missions to perform SLAM. (e.g. Raven data from ISS 

rendezvous)

• These missions use a priori maps, demonstrate that RFS 

performance with and without.

Lidar

VisCam IRCam

Credit: NASA, Raven
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Summary:

• Autonomous spacecraft navigation: a necessary requirement of future exploration/servicing missions.

• Current methods: ill-suited for challenging measurement environment during rendezvous/prox ops.

• Random Finite Set based filters: a more natural choice for these kinds of problems.

• Initial simulations: first known demonstration of RFS SLAM methods for spacecraft pose estimation and mapping.

• Moving forward: 

• Investigate different variants of filter formulations for robustness, real-time computing.

• Assess performance using flight data.
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Motivation Conclusions



Thanks for listening!

Questions?
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