Time Series Analysis in the Search for Other Worlds through Transit Photometry

Jon M. Jenkins NASA Ames Research Center

Monday January 21 2019

Astronomical time Series 2019

Max Planck Institute for Astronomy Heidelberg, Germany

- The Science Operations Center Pipeline
- Solar Variability
- Detection Theory
- A Wavelet-based Adaptive Matched Filter
- Observations of Stellar Noise on Transit Timescales
- Excess Stellar Variability
- Summary

CTPS

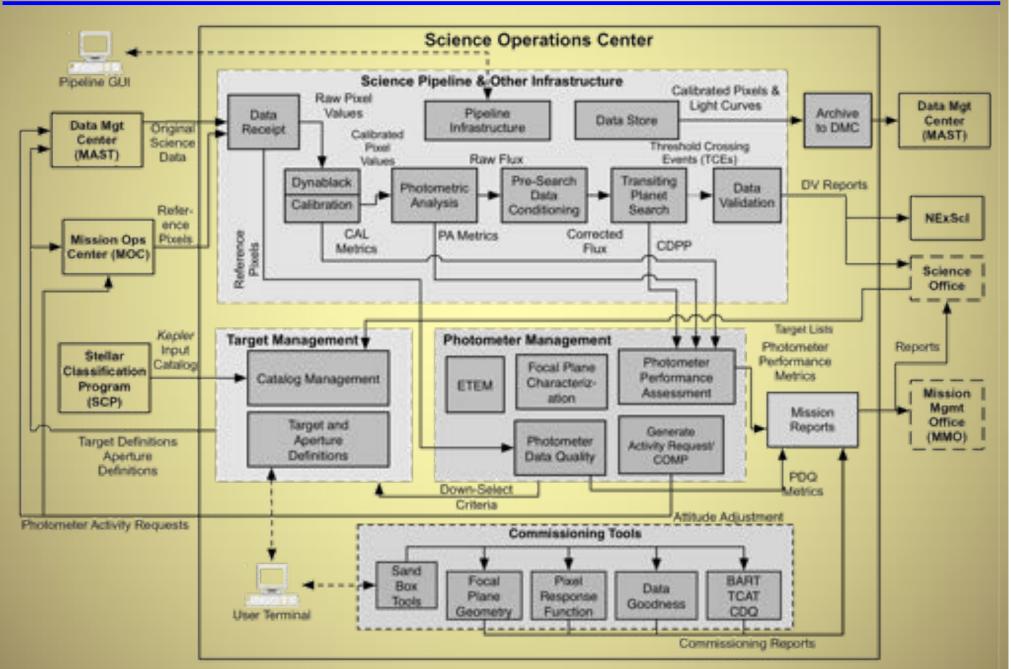
0

FA

Dowell

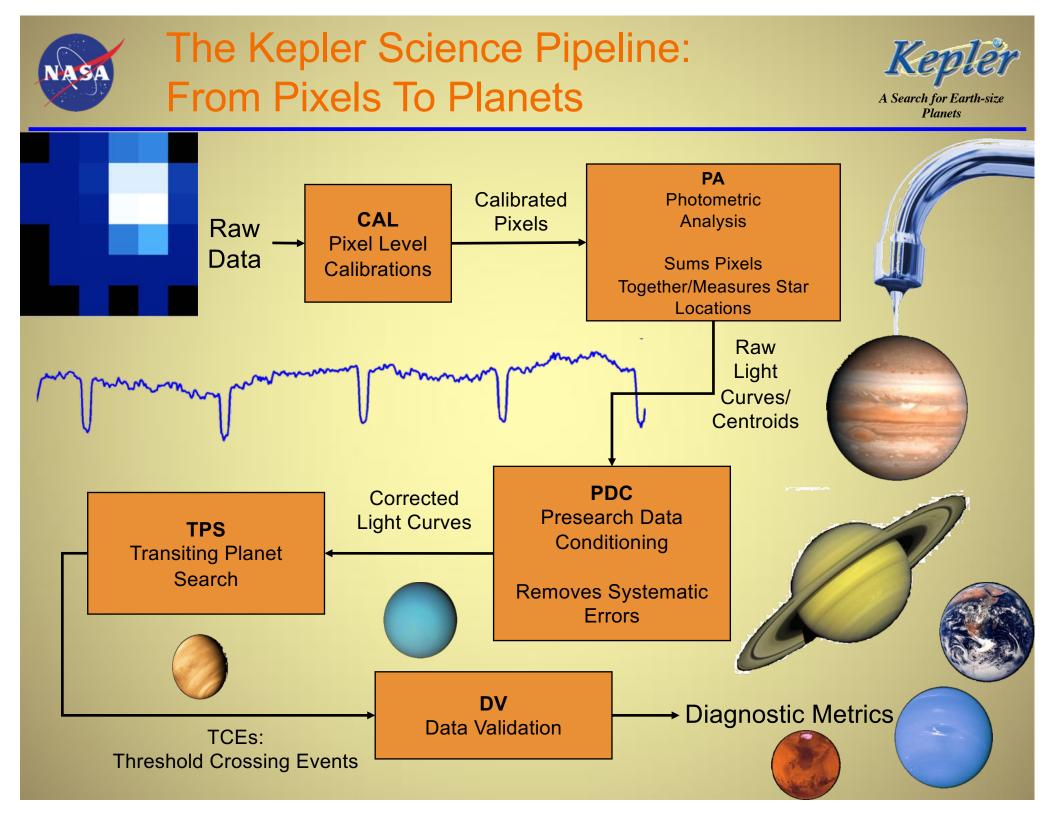
Science Operations Center Architecture

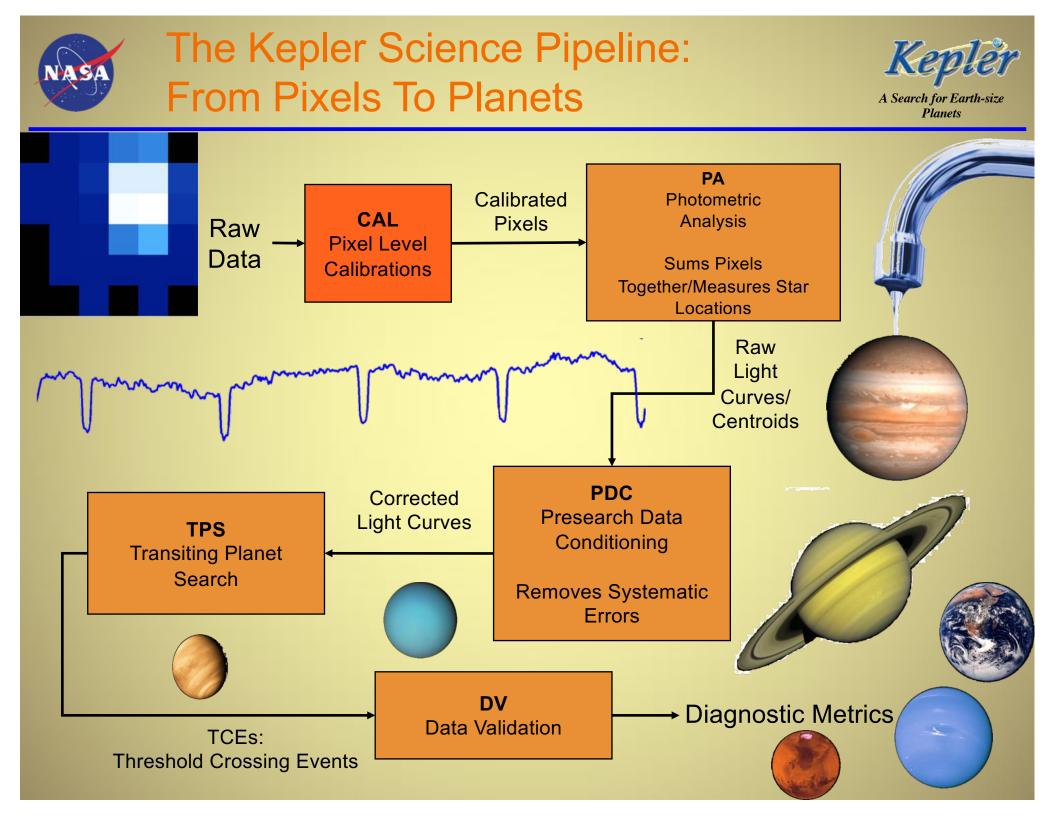
VA S

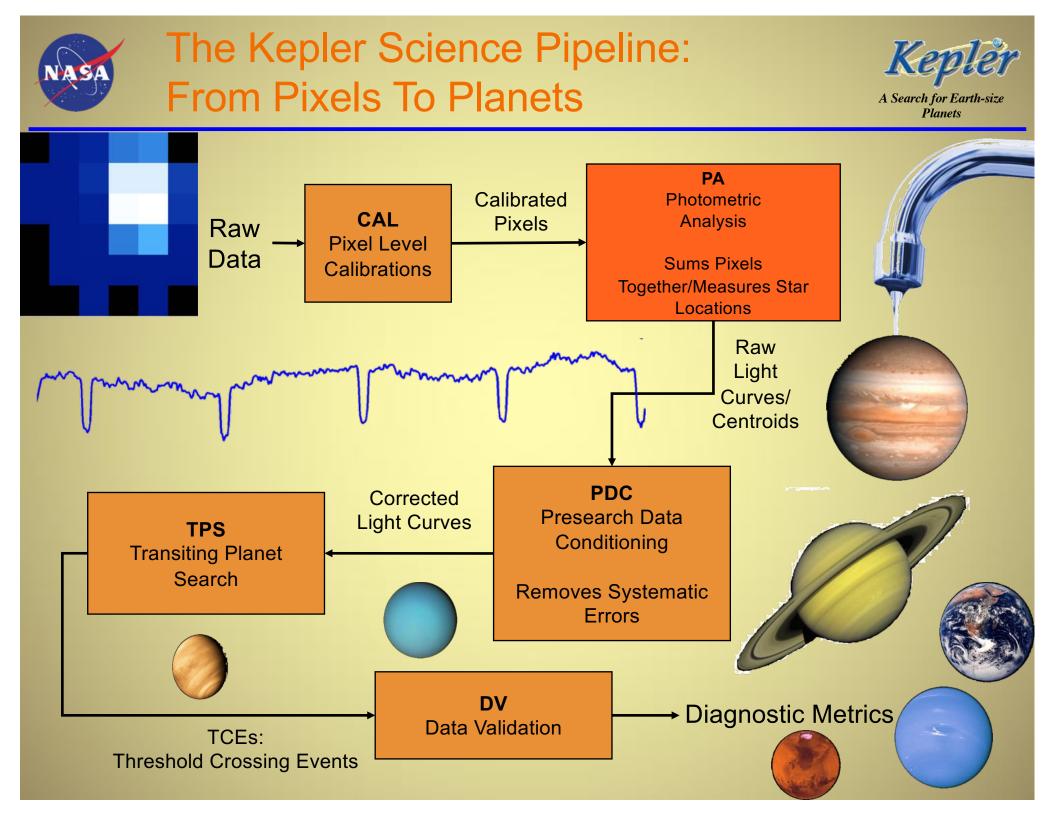


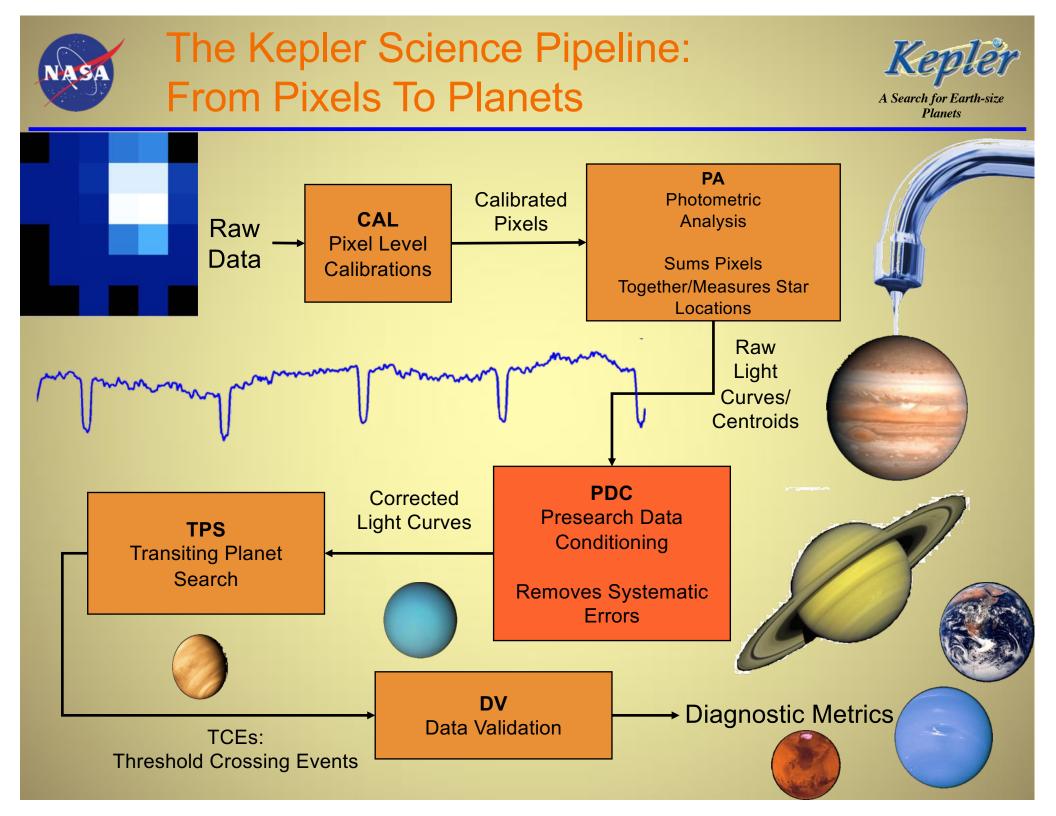
Kepler A Search for Earth-size

Planets





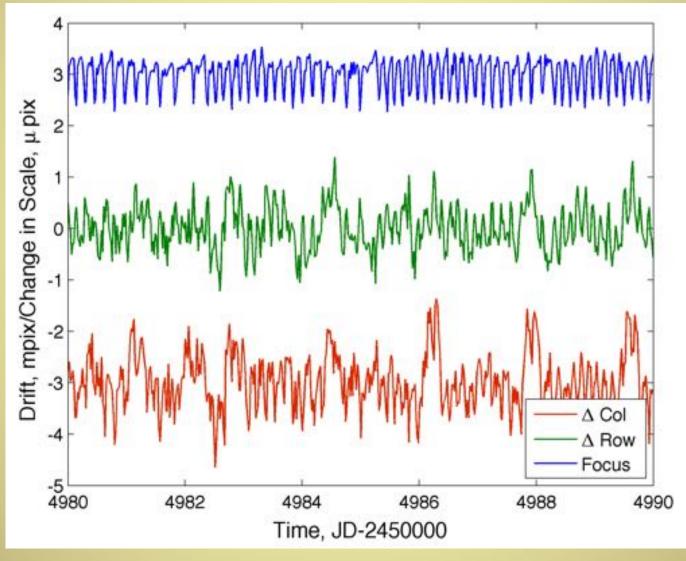




Short Timescale Instrumental Errors

AS

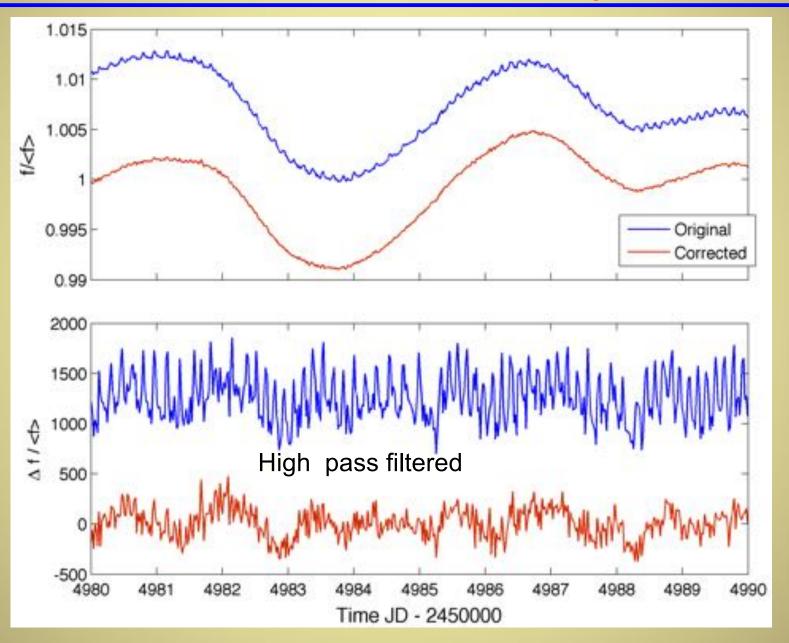
Signature of a heater cycling on the reaction wheels 3/4



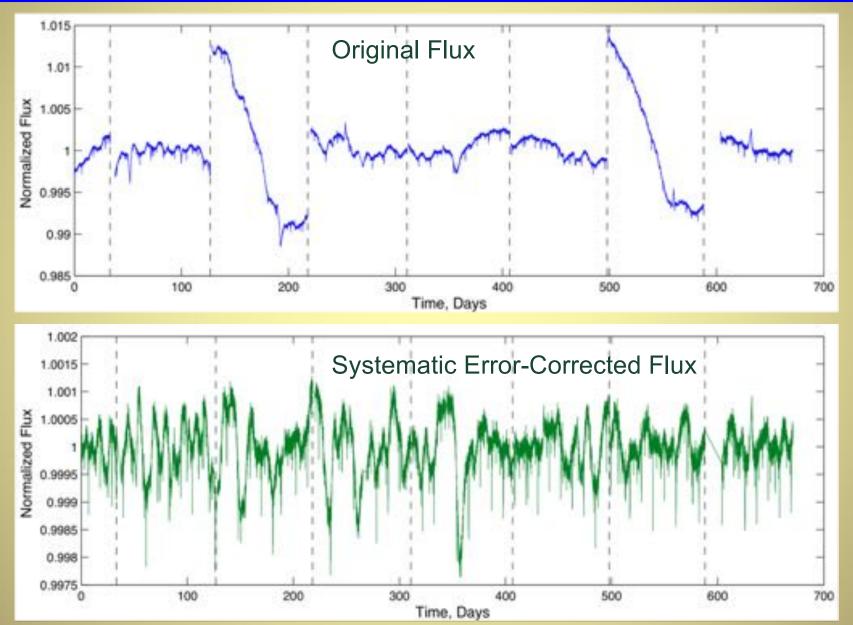
Kepler is sensitive to its thermal environment

Instrumental Effects in Photometry

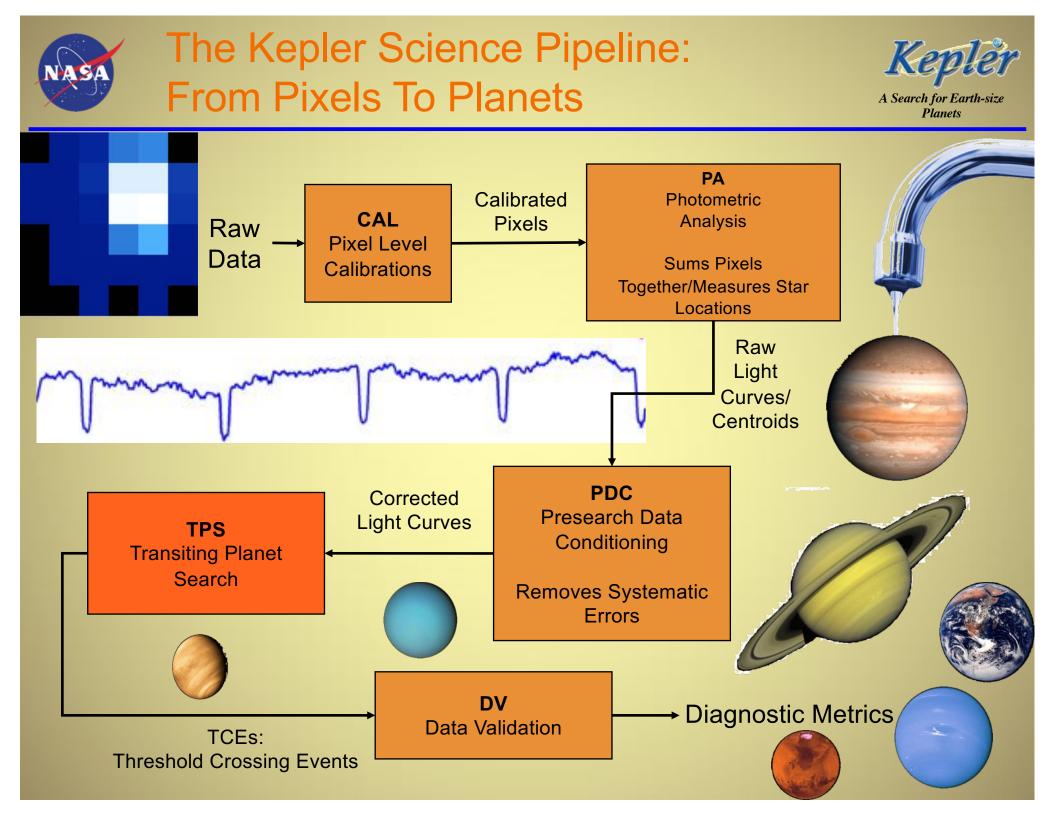
NASA

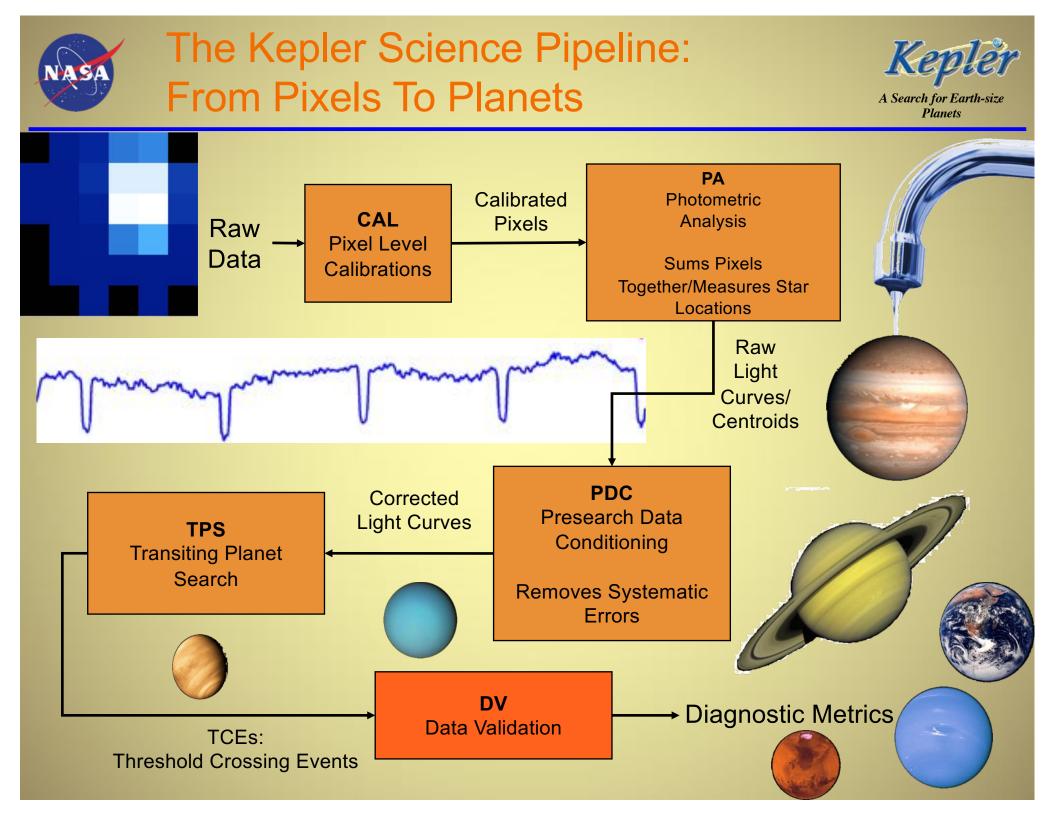


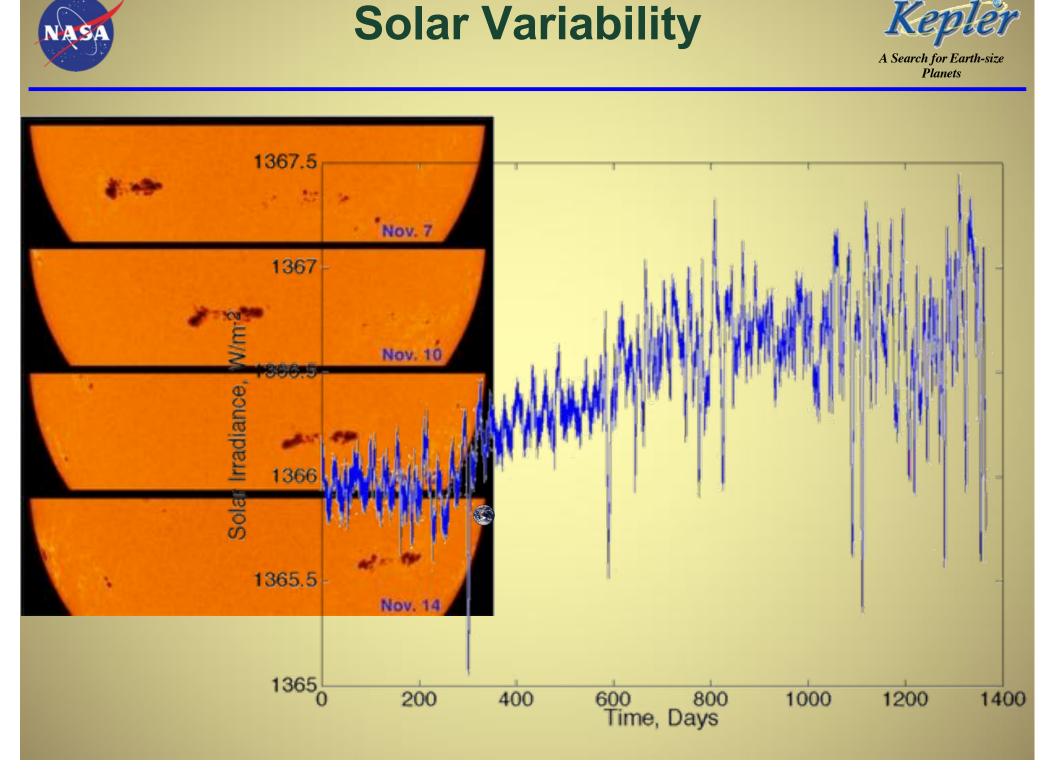
Correcting Systematic Errors



We apply a Maximum A Posteriori approach as per Stumpe et al. 2014







Detecting Deterministic Signals

A Search for Earth-siz Planets

The problem:

- H0: x(n) = w(n) or
- H1: x(n) = s(n) + w(n)

s(n) is the signal of interestx(n) is the time series we observew(n) is the observation noise (Gaussian)

The best method for detecting a known signal in additive Gaussian noise is a matched filter

A matched filter measures the correlation between the data and the signal, normalized by the rms variation of the observation noise

Detection Statistics

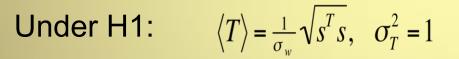
A Search for Earth-size Planets

$$T = \frac{x \ s}{\sigma_w \sqrt{s^T s}}$$

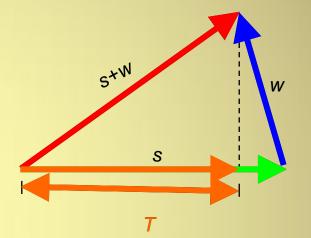
Т

Under H0: $\langle T \rangle = 0$,

$$\langle T \rangle = 0, \quad \sigma_T^2 = 1$$

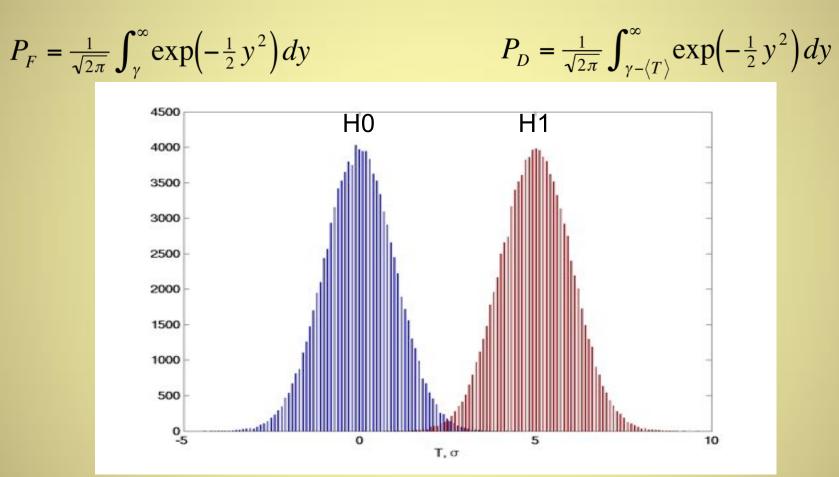


If $T < \gamma$, then choose H0, if $T > \gamma$, then choose H1



Receiver Operating Curves

T is a Gaussian random variable



How do we choose the threshold, γ ?

If amplitude of *s* not known, we generally set γ to control $P_{F_{c}}$ (Neyman-Pearson Criterion)

Detection Statistics For Colored Noise Kepler

A Search for Earth-size Planets

w is (colored) Gaussian noise with autocorrelation matrix *Rx* is the data*s* is the signal of interest

Decide s is present if

$$T = \frac{x^T R^{-1} s}{\sqrt{s^T R^{-1} s}} = \frac{(Hx)^T (Hs)}{\sqrt{(Hs)^T (Hs)}} = \frac{\tilde{x}^T \tilde{s}}{\sqrt{\tilde{s}^T \tilde{s}}} > \gamma$$

How do we determine R?

Looks like a simple matched filter!

If the noise is stationary, we can work in the frequency domain:

$$T = \int \frac{X(f)S^*(f)}{P(f)} df \left/ \sqrt{\int \frac{S(f)S^*(f)}{P(f)} df} \right.$$

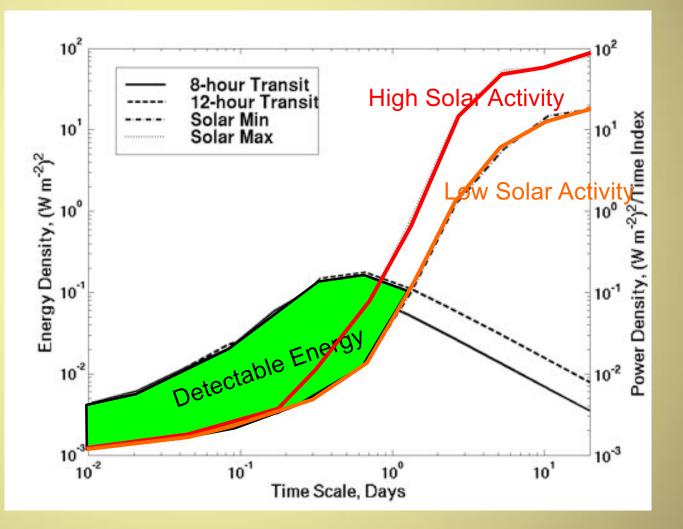
PSDs for Solar-Like Variability *Ke*

Is stellar variability stationary?

No!

We must work in a joint time-frequency domain

Wavelets are a natural choice



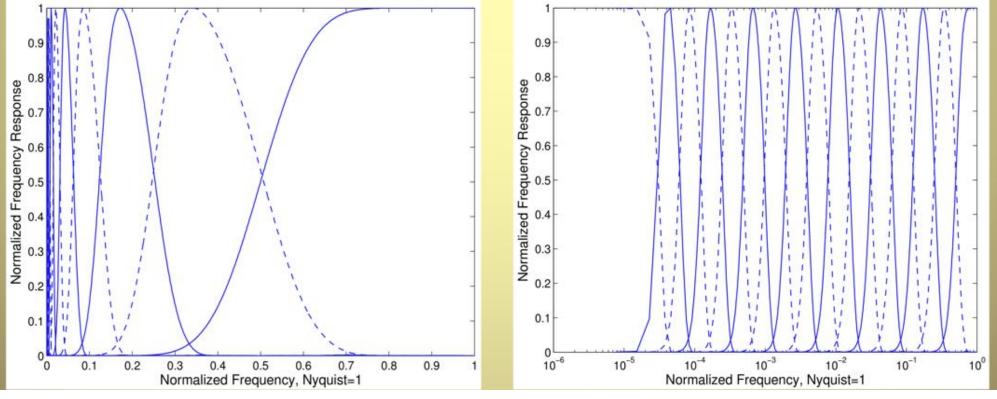
A Wavelet-Based Approach

A Search for Earth-size Planets

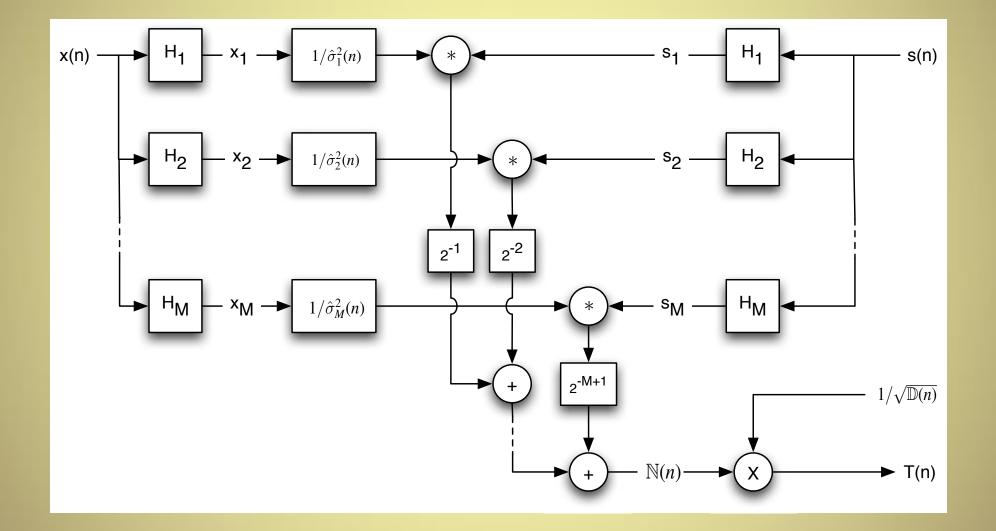
Filter-Bank Implementation of an Overcomplete Wavelet Transform

The time series x(n) is partitioned (filtered) into complementary channels

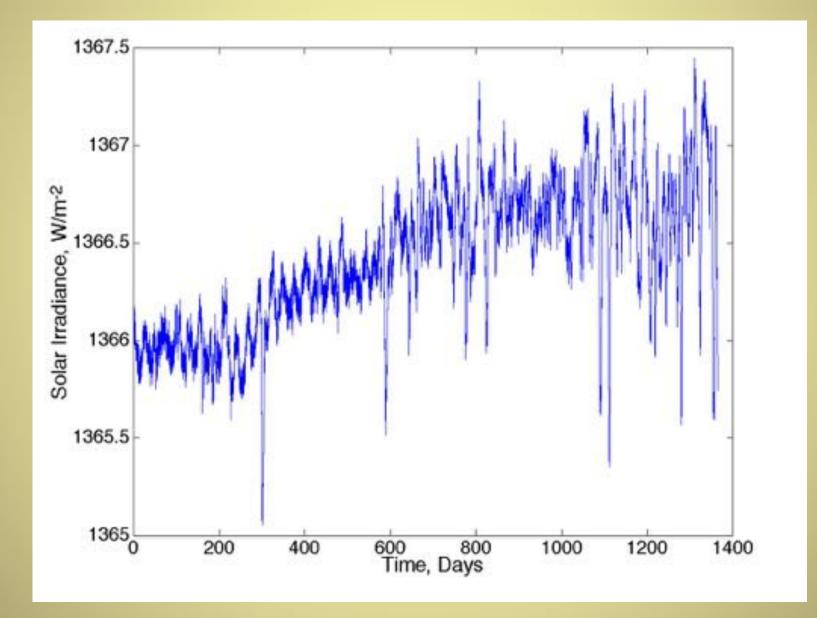
 $\begin{aligned} W_X(i,n) &= \{h_1(n) * x(n), h_2(n) * x(n), \dots, h_M(n) * \\ x(n)\} &= \{x_1(n), x_2(n), \dots, x_m(n)\} \end{aligned}$



Signal Flow Diagram

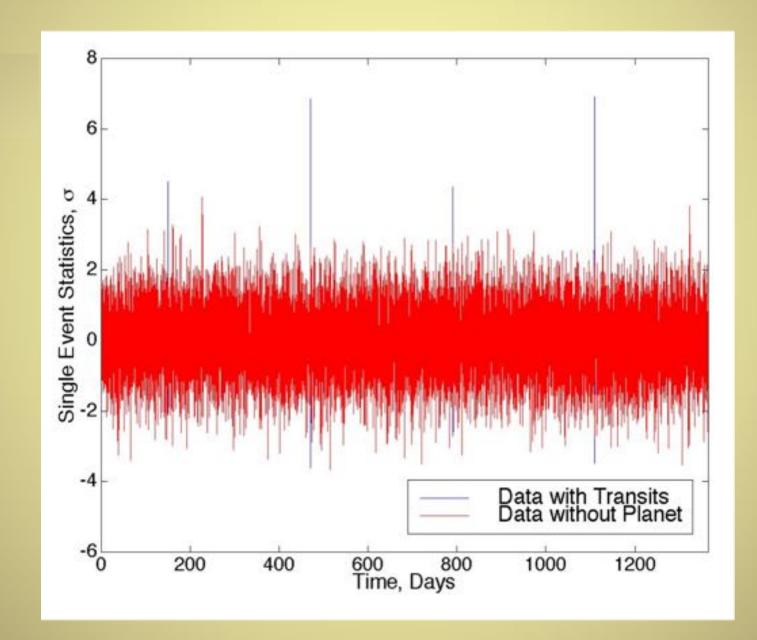


Kepler-like Noise + Transits

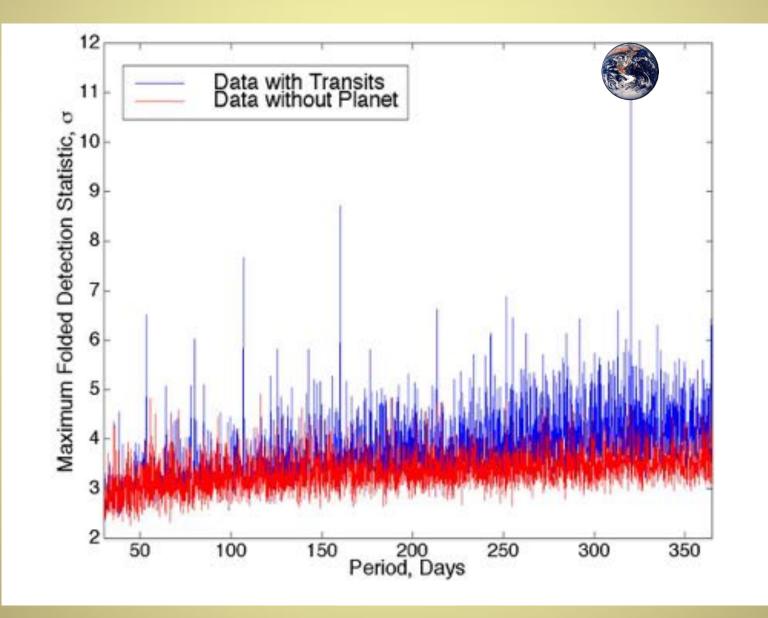


Single Transit Statistics

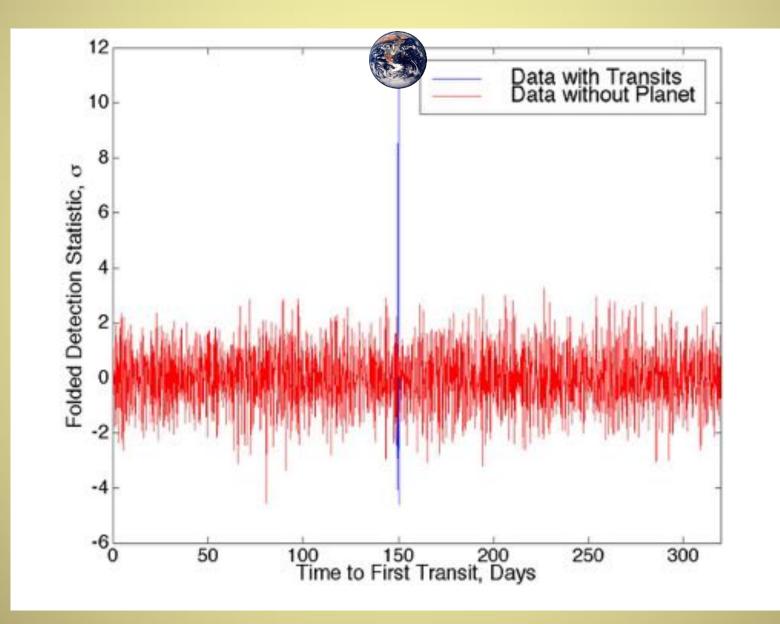
A Search for Earth-size Planets



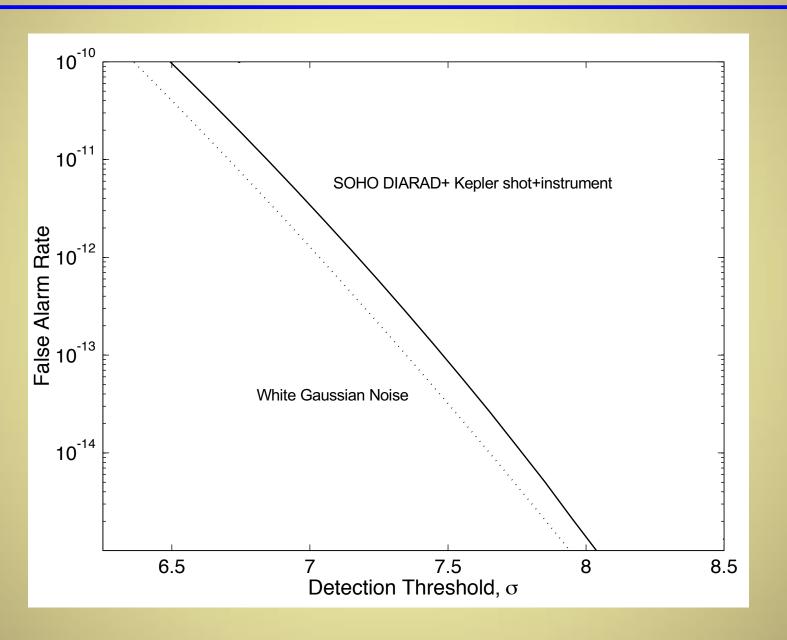
Folded Transit Statistics



Folded Statistics at Best-Matched Period Kepler



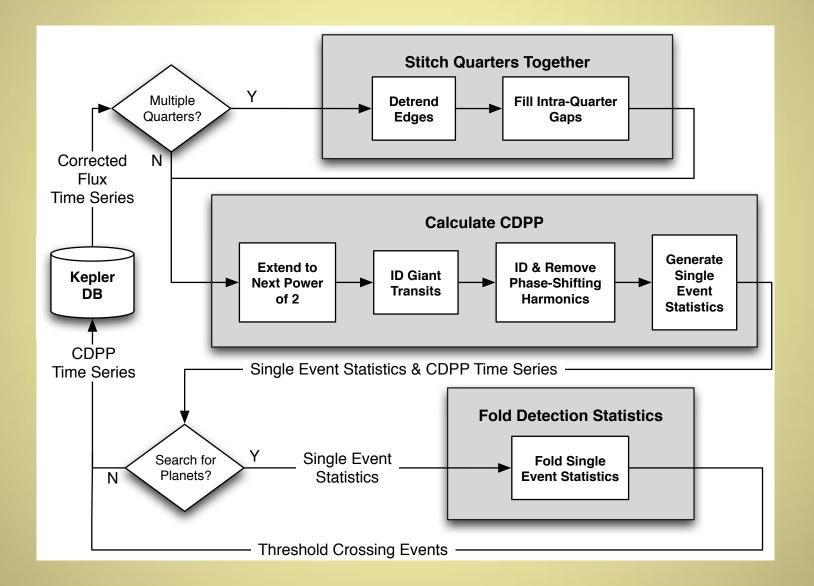
Setting the Threshold



Transiting Planet Search Architecture

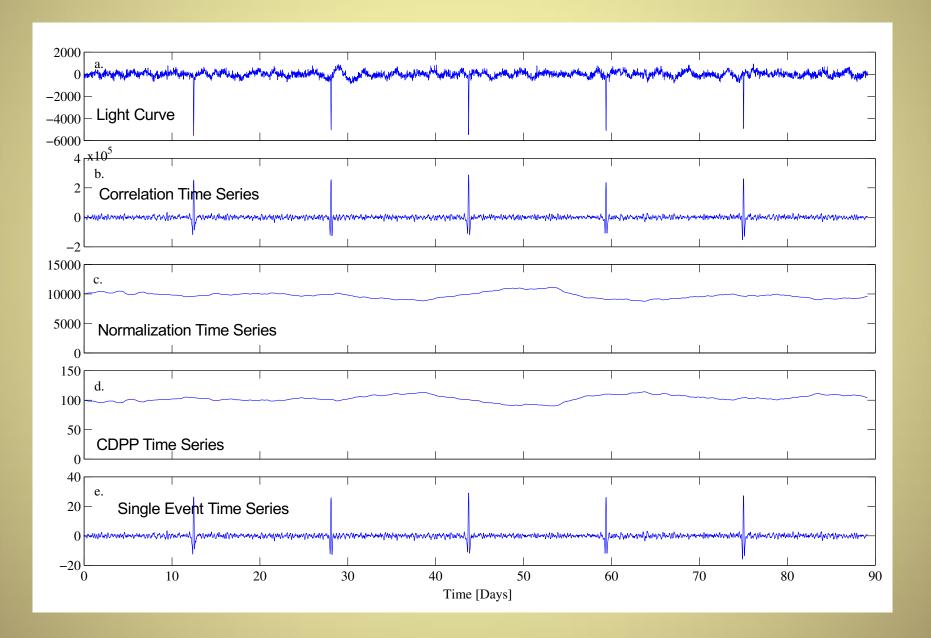
Kepler

A Search for Earth-size Planets

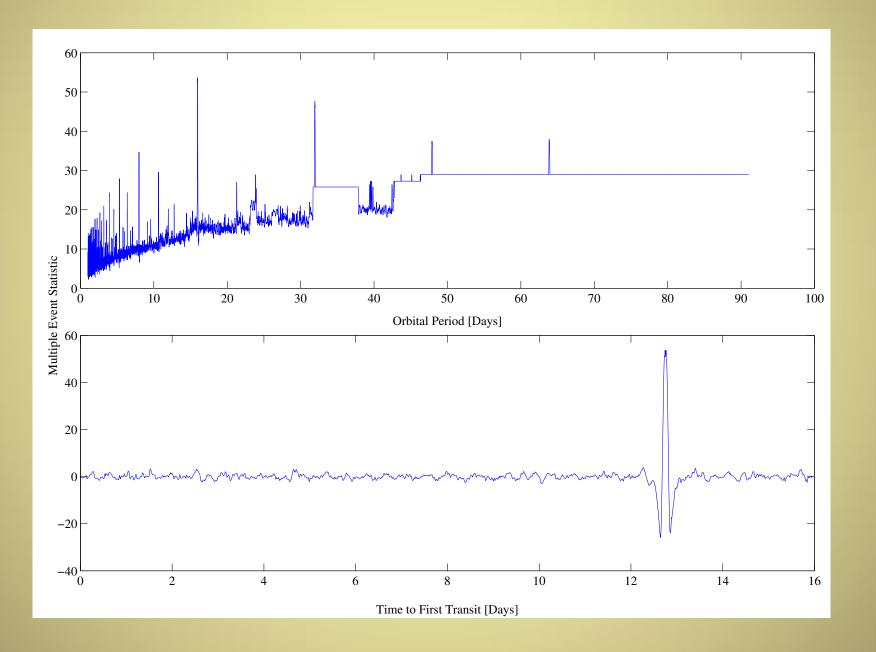


Details here: https://archive.stsci.edu/kepler/manuals/KSCI-19081-002-KDPH.pdf

A Kepler Example: Calculating CDPP

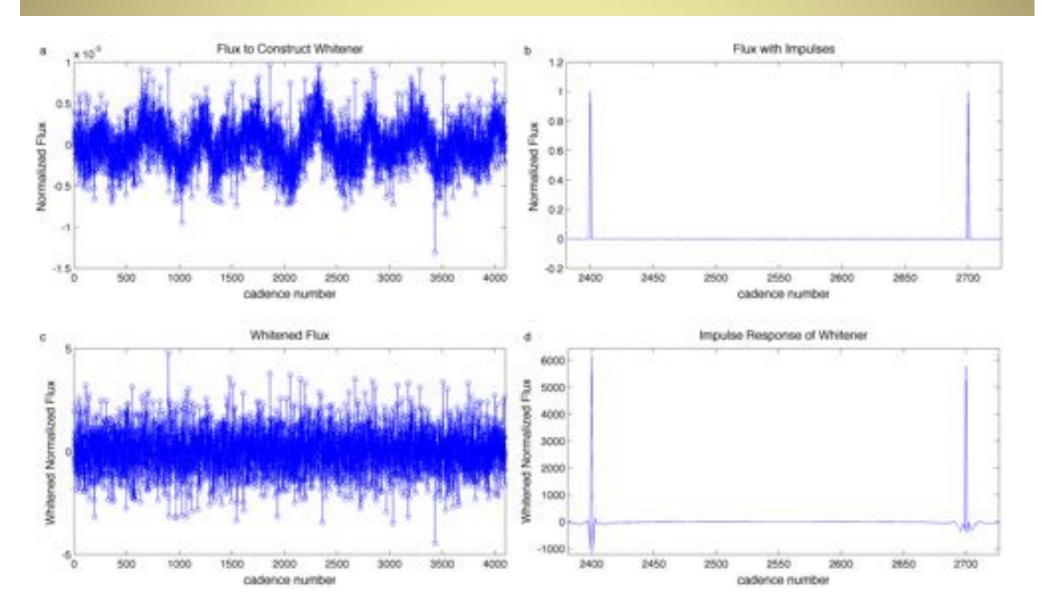


A Kepler Example: Calculating CDPP



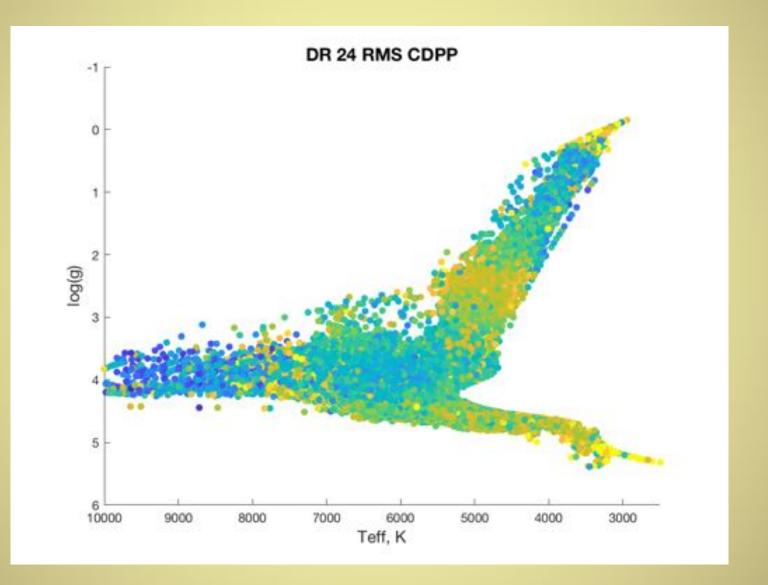
A Kepler Example: Adaptive Whitening

Kepler



Photometric Precision

A Search for Earth-size Planets

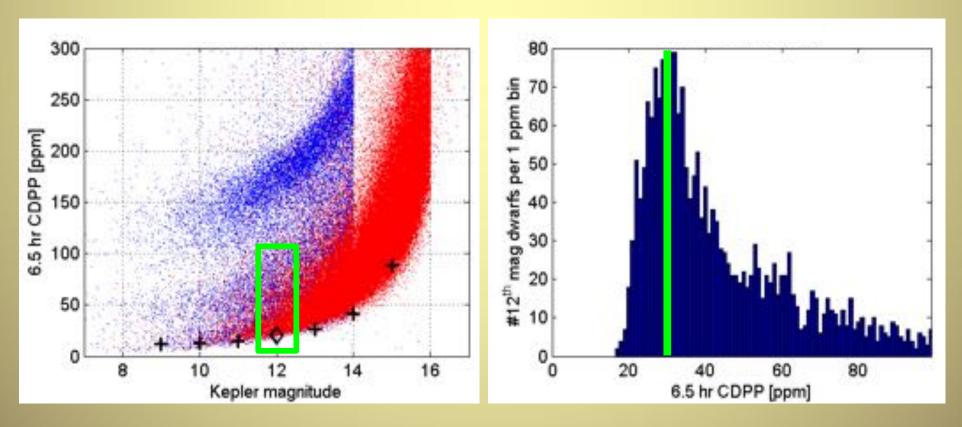


G dwarfs appear to be quiet, and M dwarfs appear to be much noisier

Excess Stellar Variability

Original Noise Budget (Kp=12): 14 ppm Shot Noise 10 ppm Instrument Noise 10 ppm Stellar Variability => 20 ppm Total Noise

Reality (11.5 ≤ Kp ≤ 12.5) 17 ppm Shot Noise 13 ppm Instrument Noise 20 ppm Stellar Variability => ~29 ppm Total Noise



- Stellar variability presents a fundamental limit on the detectability of transiting Earth-like planets
- Adaptive matched filters can provide near-optimal detection of Earth-size transits and characterize the observation noise
- Larger than expected stellar variability can be compensated for by increasing the duration of the campaign
- Controlling instrumental noise and systematics is also very important as shot noise, instrument noise and stellar variability should be comparable in a well designed mission