SMART NAS Test Bed Overview

Kee Palopo

August 31, 2016

SMART NAS Test Bed and Context

SNTB Year #1 Architecture

3

SMART-NAS Test Bed Overview

- SMART NAS Test Bed role
- Metric and Benefits
- Objectives
- Use Cases
 - Trajectory-Based Operations
 - UAS Integration
 - Real-time System-wide Safety Assurance
- Approach
 - Use-case driven
 - Concepts & Technologies development life cycle
- Status

SNTB Role

Time from concept to deployment and beyond

Metric

Concepts & Technologies measures:

- Delay/cost reduction
- Increased throughput
- On time/predictability/stability, flexible schedule/on demand
- Maintain or enhance safety and environmental impact
- Maintain or reduce workload

Accelerated delivery of benefits of Concepts & Technologies

Benefits

- Higher Complexity and Broader Scope
 - Integrate across ATM domains and beyond physical labs
 - Evaluate more diverse operations
- Higher Fidelity
 - Standardize simulation infrastructure across work-groups
 - Use live, virtual, and high-fidelity constructive assets
- Easier Access to Real-time Simulations
 - Automate human-intensive preparation and post-processing
 - Leverage advances in software assurance and big data

Objectives

Enable high-fidelity human-in-the-loop and automation-in-the-loop simulations and tests that are either impractical or impossible today but are needed to:

- Validate concepts using multiple operational domains (gate-to-gate TBO)
- Investigate concepts related to revolutionary operations (UAS integration)
- Provide a high-fidelity test environment for real-time system-wide safety assurance (RSSA) capabilities

Arrival/Departure TBO Use Case

Integrated UTM Use Case

Real-time System-wide Safety Assurance

Current Capabilities

- Testing uses limited amounts of data
- Data access is cumbersome and not centralized
- Safety algorithms separate from real-time human-in-the-loop simulations

SMART-NAS Test Bed Capabilities

- Testing uses data from throughout the NAS
- Data access is via standardized interfaces
- Safety modeling algorithms integrated with simulation infrastructure

Concepts & Technologies Development Life Cycle

- Research and Exploration
- Architecture and Design
- Product Development
- Product Testing
- Product Deployment
- Product Support
- Maintenance & Migration

Use Cases (Year 1 and Year 2)

• UC-1: Scenario Validation

- User Management and GUI Front End
- Fixed Component Library
- Simulation Architect
- Big Data Driven Scenario Builder
- Execution Manager
- DDS Message Bus
- WorldWind Visualization

• UC-5: Phase 1 TBO Simulation (Metroplex)

- Integrated Industry and NASA Simulation
- Metroplex arrival and departure scheduling integration
- JFK OPD arrival and 4 runway operations
- Large scale simulation with low and medium fidelity components
- High Fidelity Visualization

• UC-8: Data Analytics

- UTM Connectivity
- Real-time System-Wide Safety Connectivity
- SWIM/Legacy Data Streaming
- Data Warehouse Data Streaming
- Static Resource Allocation

• UC-5: Phase 1 TBO Simulation (ATD-1)

- Participant VoiceComm
- Distributed Environments (NASA)
- En Route and Terminal Platforms
- Metrics Dashboard

• UC-2a: Autonomy Simulation

- Open Component Library
- Give-Take Scenario Builder
- Participant DataComm
- Dynamic Resource Allocation
- Cloud Support
- Limited Scaled Real-time Support

2018

Use Cases (Year 3 and Year 4)

- UC-2a: Autonomy Simulation
 - Extensive Scaled Real-time Support
- UC2b: UAS Simulation (UTM)
 - Out-the-Window Visualization (Tower)
 - Out-the-Window Visualization (Aircraft)
 - Airport Tower Platforms
 - Ground Control Stations
- UC4: Phase 2 TBO Simulation (ATD-2)
 - Distributed Environments (External)
 - Airline Ramp Tower Platforms

- UC3: Phase 3 TBO Simulation (ATD-3)
 - Secure Component Library
 - Convective Weather Integration
 - Oceanic Platforms
 - Airline Operations Center Platforms

2019

Status

Finished 2-Year Testbed Architecture NRAs

- Defined enterprise service bus architecture for distributed high-fidelity simulations
- Cost/benefit assessments showed positive benefits for both research activities and deployment of new ATM systems

Developed Proof-of-Concept Testbed Software

- Focused on traffic, weather, and airspace data integration
- Investigated several software assurance, cloud-computing, big data, and realtime analytics technologies relevant to implementation

Implementing Full-scale Testbed Software

- Realistic scenario design and validation for gate-to-gate TBO simulations
- Scalable and distributed data provider for real-time data analytics

SMART NAS Test Bed Highlight

Early exploration enabling metroplex-type simulation of NY-area airports. As part of NY TBO project and working with PANYNJ

- In July 2016, NY metroplex with combined arrival, departure, and surface operations was simulated using early SNTB execution and connection framework for distributed simulation
- Preliminary SNTB enabled metroplex scenario simulation

Scenario Validation (Use Case #2)

Initial auto-generation of MACS scenario input file from data in database (minutes to generate)

Manually verify on MACS and keep statistics

Next: automating the verification step