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Abstract
Generating all diagnoses is computationally
intractable. Therefore, many of the state-of-
the-art approaches are incomplete. Quan-
tum computers may however offer a solu-
tion. The first commercially available quan-
tum computer is being used to minimize
polynomials that are difficult for classical
simulated annealing but easy for quantum
annealing. All problems in Model-based
Diagnosis (MBD) can be transformed into
a polynomial minimization problem, allow-
ing one to apply a quantum algorithm called
quantum annealing to solve MBD problems.
To better understand the need for this quan-
tum approach, we designed two simulated
annealing diagnostic algorithms tailored to
run on a polynomial representation of MBD.
These algorithms differ on their policy for
random neighborhood variable selection. In
addition, enhanced metrics were devised
to provide more diagnostic coverage. Fi-
nally, these two simulated annealing algo-
rithms were analyzed and empirically eval-
uated and compared against state-of-the-art
probabilistic methods for MBD such as SA-
FARI using ISCAS-85.

1 Introduction
Traditional algorithms for circuit diagnosis rely on
structural descriptions such as propositional logic for-
mulae of a circuit. In this paper we investigate whether
an alternative formulation of a circuit in the form of a
polynomial is more suitable for performing diagnostic
tasks. Our conjecture is the following: If we trans-
late a propositional logic formula that fully describes
a boolean circuit, into an equivalent polynomial and
we use this polynomial as the input to a standard min-
imization algorithm, is this going to be faster or more
accurate than traditional diagnosis algorithms?

This problem is relevant in two ways. First, we ex-
plore a different approach to diagnosis which, if faster
or more accurate, can help to advance the field of di-
agnostics. Second, when carrying diagnosis tasks into

the quantum domain such as the D-Wave quantum
computer [Perdomo-Ortiz et al., 2015] we are dealing
with a quantum annealing (QA)[Kadowaki and Nishi-
mori, 1998; Farhi et al., 2001] algorithm. QA re-
ceived its name in relation to its classical and more fa-
mous relative: simulated annealing (SA) [Kirkpatrick
et al., 1983]. The only relation of these two algo-
rithms is that both of them are sequential algorithms
and use an annealing schedule as a heuristic strategy
to solve combinatorial optimization problems. In SA,
thermal fluctuations are used to explore the complex
energy landscape, while in QA, quantum tunneling
and other quantum mechanical effects are used as a
computational resource. Since QA requires a polyno-
mial instead of a propositional formula we can estab-
lish a base line to compare future quantum applica-
tions against polynomial-based diagnostic algorithms
on standard PCs. When we look at traditional diagno-
sis algorithms such as SAFARI [Feldman et al., 2010],
we see that these algorithms take the model structure
of a circuit into account. Therefore, these algorithms
are very accurate, but require a significant amount of
runtime. Thus, we think it is important to try alter-
native approaches in order to discover whether tradi-
tional PCs can be sped up by evaluating polynomials
instead of propositional logic formulae.

With the approach described in this paper we trans-
late a model of a boolean circuit into a polynomial
that can be evaluated by standard optimization algo-
rithms such as SA or Hill climbing. This paper makes
two contributions: First, building on work in [Feld-
man et al., 2010] we show how to translate a model
of a boolean circuit on the gate-level into a propo-
sitional logic formula. From there we show how to
translate the propositional logic formula into a polyno-
mial. Second, we show how different implementations
of Simulated Annealing and Random Search that use
a polynomial formula compare to SAFARI that uses a
propositional logic formula. Results are obtained us-
ing the ISCAS85 benchmark.

2 Related Work
Several approaches to compute a set of diagnosis can-
didates in the context of model-based diagnosis have
been proposed in the past. In [Reiter, 1987], the au-



thors proposed a breadth-first search algorithm that
uses the so called HS-trees and, in [Wotawa, 2001],
some improvements over the base algorithm have been
suggested. In [Zhao and Ouyang, 2007] a method us-
ing set-enumeration trees to derive all diagnosis can-
didates in the context of model-based diagnosis is pre-
sented. All of the above algorithms make use of a con-
straint solver to check whether or not a set d is minimal
diagnosis candidate, thus not requiring an explicit con-
flict set availability. While sound and complete, such
algorithms do not gracefully scale to large real-world
problems.

In [Feldman and Provan, 2008], the authors propose
a stochastic search algorithm, that starts with a candi-
date d for the system and set of observations and it-
eratively removes elements from d while guaranteeing
that the resulting set still is a candidate. In [Vinterbo
and Øhrn, 2000; Huang et al., 1994] several genetic
algorithms to compute diagnosis candidates are pro-
posed. While scalable to large problems, these algo-
rithms do not guarantee soundness nor completeness.

The research community has considerably extended
the body of recent benchmarking studies in domains
ranging from space to machine learning and diag-
nostics [Smelyanskiy et al., 2012; Rieffel et al.,
2015; Perdomo-Ortiz et al., 2015; Benedetti et al.,
2016a], of quantum annealers based on supercon-
ducting qubits [Johnson et al., 2011; Harris et al.,
2010]. This paper extends this body of benchmarks by
studying MBD problems and compare it to the classi-
cal/probabilistic approaches.

3 Definitions
This section provides the basic framework for the al-
gorithms we design and analyze.

Definition 1 (Basis). A basis B is a set of single-
output Boolean functions {B1, B2, . . . , Bn}.

A basis can be constructed from the common logic-
gate types AND, OR, NAND, NOR, XOR, inverter,
and buffer.

In this article we use the common propositional
logic connectives: ∧, ∨, ⊕, ¬, →, and ↔. The log-
ical connectives implication (→) and equivalence (↔)
do not appear in the circuits we are diagnosing and
are not part of the basis. The Boolean formula that is
equivalent to an AND gate, for example, is a ∧ b. The
semantics of all this is the usual one and is explained
in any introductory logic or VLSI design book.

Logic circuits are designed by drawing gates from
the basis and connecting them with wires. Wires are
represented as variables. A well-formed logic-circuit
design is a Direct Acyclic Graph (DAG). There are no
hanging edges in the DAG (that would be a violation
of the common definition for a DAG). We work with
connected DAGs only. If somewhere in our algorithms
a DAG gets disconnected, we remove the orphan or
treat the two disconnected DAGs separately.

Definition 2 (Boolean Circuit). Given a basis B, a
Boolean circuit M(B) = 〈V ∪ {I?, O?}, E〉 is a DAG

in which each edge e ∈ E is a variable, each node
v ∈ V is a Boolean function drawn from B, I? is a
primary input source, and O? is a primary output sink.

The special primary input source and primary out-
put sink nodes are not normally drawn in a circuit di-
agram. The edges that are adjacent to I? are the pri-
mary inputs and the edges that are adjacent to O? are
the primary outputs.

A Boolean circuit, as defined, has no provisions for
failure. We can allow parts of a circuit to fail by intro-
ducing extra fault variables to each logic-gate B and
extra elementary failure functions (constraints).

Definition 3 (Fault-Augmented Model). Given
a basis B, a Boolean circuit M(B) and a
second fault-augmented basis B?, a fault-
augmented model SD(B,B?) is defined as
the ordered triple 〈COMPS, V, E, F 〉 where
COMPS = {f1, f2, . . . , fn}, n = |V |, and F
is a mapping F : B → B?.

Definition 3 allows us to add a fault variable to each
logic gate, and depending on the value of the fault vari-
able to allow either the original (intended) behavior of
the gate or some specified faulty one.

Definition 4 (Observation). An observation α is an
assignment to some or all primary inputs and primary
outputs of a Boolean circuit SD.

In a circuit with two 2-bit input vectors a and b and
an output vector c an observation constitutes exactly
one assignment to each value of a, b, and c. Obser-
vations are generated either using the fault-augmented
model or are taken from real-world sensor data.

Definition 5 (Fault-Injection). Given a fault-
augmented model SD with fault variables COMPS, a
fault-injection φ is an assignment to all fault variables
in COMPS.

With fault-injection we take all assumable variables
in a model and assign some value to them. As each
assumable fi ∈ F implies the function of a gate,
we can use F to model faulty behavior for a propo-
sitional term. For an AND gate this implication be-
comes: h→ (o↔ i1 ∧ i2). As φ is the set of all fault
variables, we count the amount of True values with-
ing |phi| with |phi| =

∑
i φi,whereφi = True. We

speak of a single fault, when |phi| = 1. A double-fault
is given by |φ| = 2 etc.

Definition 6 (Diagnosis). Given a fault-augmented
model SD with fault variables COMPS and an obser-
vation α, a diagnosis ω is defined as an assignment to
all fault variables in COMPS such that ω |= SD ∧ α.

Diagnoses are found with respect to the assumables.
Given an observation α and a fault-free model of a
boolean circuit in propositional logic it is possible to
look at each assumable and determine the probabil-
ity whether or not the associated component is faulty.
Many algorithms for finding diagnoses exist. The next
section shows an experimental setup to compare dif-
ferent algorithms by means of an example circuit.
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Definition 7 (Health Estimation). Given a fault-
augmented model SD with fault variables COMPS,
a Boolean circuit health estimation H is defined as the
set of probabilities H = {Pr(f =⊥)} of each fault
variable f ∈ COMPS assuming the value of ⊥.

Notice that Pr(f =⊥) = 1 − Pr(f = >) and that
each element of H defines a binomial probability dis-
tribution function. In a Boolean circuit the health-
estimation gives a value for the probability of each
single component being faulty.

4 Circuit Diagnosis and Polynomial
Minimization

As a running example throughout this paper we will
use the two-bit adder depicted in figure 1. The adder is
a combination of three AND-Gates, three XOR-Gates
and one OR-Gate. a and b are the input vectors, re-
spectively. Σ describe the output sum, while z are
intermediate values. c0 is the carry bit. The circuit
is fully described through the following propositional
logic formula:

∣∣∣∣∣∣∣∣∣∣∣∣

z0 ↔ a0 ∧ b0
Σ0 ↔ a0 ⊕ b0
z1 ↔ a1 ∧ b1
z2 ↔ a1 ⊕ b1
z3 ↔ z2 ∧ z0
Σ1 ↔ z2 ⊕ z0
co ↔ z1 ∨ z3

(1)
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Figure 1: 2-bit adder

In order to use the described adder for SA three
steps are necessary:

1. Adding fault modes to formula 1 to enable diag-
nostic tasks

2. Creating observations for the adder to create hy-
potheses for value propagation

3. Integrating the observations with the adder model
to obtain a polynomial that can be used for opti-
mization.

After obtaining a model of the boolean circuit in form
of a propositional logic formula the model has to be
augmented to become a fault model (see definition 3).

The fault-model allows us to have a fault variable im-
ply each boolean term M(B). Through this it is possi-
ble to specify which gates are functioning normal and
which exhibit faulty behavior. Three different fault
models exist, the weak-fault models and the strong
fault models in form of stuck-at-one and stuck-at-zero
models, respectively.

We typically use “standard” ways to augment bases
in order to allow faults. The simplest ones in Boolean
(propositional logic) are “weak-fault-models” also
known as models with ignorance of abnormal behav-
ior. Consider, for example, the Boolean model of an
AND-gate as placed in a circuit: o ↔ i1 ∧ i2. The
weak-fault model of the same AND-gate would look
like h→ (o↔ i1 ∧ i2).

Another type of fault-models are “strong-fault-
models”. In these cases the basis B? contains only
one function, the constant > or ⊥. In this simple case,
when the output of a gate assumes a stuck-at value, we
talk about stuck-at-zero and stuck-at-one models. The
propositional logic formula that fully models the 2-bit
adder in a stuck-at-one model is shown in figure 1:∣∣∣∣∣∣∣∣∣∣∣∣

[¬f0 → (z0 ↔ a0 ∧ b0)] ∧ (f0 → z0)
[¬f1 → (Σ0 ↔ a0 ⊕ b0)] ∧ (f1 → Σ0)
[¬f2 → (z1 ↔ a1 ∧ b1)] ∧ (f2 → z1)
[¬f3 → (z2 ↔ a1 ⊕ b1)] ∧ (f3 → z2)
[¬f4 → (z3 ↔ z2 ∧ z0)] ∧ (f4 → z3)
[¬f5 → (Σ1 ↔ z2 ⊕ z0)] ∧ (f5 → σ1)
[¬f6 → (co ↔ z1 ∨ z3)] ∧ (f6 → co)

(2)

In this formula faults can be injected by making use
of different values for f . This is done through fault-
injection (see definition 5). It is important that a fault-
injection assigns values to all assumable variables in
a model. A fault injection for the adder example in
figure 1 would be φ = ¬f2, a single-fault. As defini-
tion 5 requires that all fault variables are given values,
the φ example in the previous sentence assumes that
all missing variables f0, f1, f3, f4, f5, and f6 are as-
signed the constant ⊥.

The purpose of a diagnostic algorithm is to find
fault-injections from a model and an observation. Due
to the Boolean nature of our models and the limited
number of observation variables there are often com-
peting hypotheses for a fault injection. These individ-
ual hypotheses are called diagnoses.

To perform diagnosis on the fault-augmented model
observations have to be made (see definition 4). In
the case of the two-bit adder one observation that de-
scribes assignments to all primary inputs and outputs
might be: a0 = 0, a1 = 0, b0 = 0, b1 = 1, Σ0 = 0,
Σ1 = 1, and c0 = 1. Obviously, the observation does
not match the expectation of the output of a function-
ing two-bit adder, as the input of 2 + 0 6= 6.

Analytically this implies that one or more compo-
nents of the circuit must be faulty. By looking at the
binary representation of the output we can infer that
either f0, f2, f3, f4, or f6 is not working correctly.
Having the knowledge about our fault injection from
the previous paragraph we can expect that a diagno-
sis algorithm should indicate a high probability that
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φ = ¬f2 was the injected fault and therefore that f2 is
the faulty component. Further we can expect that cir-
cuits connected to f2 will also show a higher probabil-
ity of being faulty. Thus we will end up with multiple
diagnoses for a single fault.

Augmenting the fault-model with observations
gives a scenario. To create a scenario the observa-
tions are propagated through the circuit using the fault-
model. The resulting propositional formula, however,
has assignments for all variables with one specific ob-
servation. To perform diagnosis the scenario must be
matched with the original circuit model so that one
unified polynomial results.

Converting the Boolean circuit to a propositional
formula, adding the observation to the formula, and
finding all satisfiable solutions is not a very practi-
cal way to compute circuit diagnoses. Sometimes it is
beneficiary in terms of speed to add extra constraints
or to temporarily remove parts of the formula.

Another approach is to convert the Boolean circuit
or the propositional formula to a polynomial expres-
sion. Table 1 shows the common propositional oper-
ators and their corresponding polynomial expressions.
If, as is customary, we set the Boolean constant ⊥ to
correspond to the real number 0 and the Boolean con-
stant > to 1, then the valuation of each polynomial in
table 1 is equivalent to the valuation of its correspond-
ing propositional operator.

Propositional Logic Operator Polyn. Equivalent

x↔ y 1− x− y + 2xy
x→ y 1− x+ xy
x ∧ y xy
x ∨ y x+ y − xy
¬x 1− x

Table 1: Propositional operators to polynomial con-
version table

Table 1 shows the polynomial equivalence of the
most commonly used propositional operators and all
other propositional operators can be reduced to these.
Conversions of Boolean circuits, however, result in
conjunction of small propositional expressions such as
the ones in table 1. A typical system description SD
looks like this:

SD =
∧
v∈V

v (3)

where |V | is sufficiently large.
Replacing this outermost conjunction operator with

a product gives a polynomial whose valuation is 0 for
the ⊥ valuation of the propositional formula and 1 for
the > valuation of the corresponding formula which
will work for the purpose of computing satisfiable and
non-satisfiable assignments through polynomial opti-
mization. Large products, however, lead to numerical
problems and we can take the sum instead. The poly-

nomial equivalent of Eq. 3 becomes:

SDpoly =
∑
v∈V

poly(v) (4)

where poly(v) is the result of recursively applying
the equivalent formulas shown in table 1. For ex-
ample, translating the first row of equation 1 from
propositional logic into a polynomial gives the fol-
lowing: Starting from the propositional logic formula
z0 ↔ a0∧b0 we first substitute the conjunction a0∧b0
to xy and then substitute the equivalence operator, re-
sulting in the polynomial

1− z0 − a0b0 + 2a0b0z0 (5)

This is done for all other rows as well, finally giving
the summation SDpoly. The value of SDpoly is min-
imal if and only if it is a non-satisfiable solution of
SD. This shows that polynomial minimization is an
NP-complete problem. Polynomial minimization it-
self can be defined as finding the minimum of a poly-
nomial by substituting different values for each vari-
able.
Theorem 1. Polynomial minimization is NP-hard.

Proof. Sketch: Consider a 3-CNF formula:

γ =

n∧
i=1

xi,1 ∨ xi,2 ∨ xi,3

where xi,1, xi,1, and xi,3 are positive or negative lit-
erals. There exists a transformation τ that takes any
formula γ and produces an equivalent polynomial γ′:

γ′ =
∏n

i=1 1−xi,1 + xi,2 + xi,3−
−xi,1xi,2 − xi,1xi,3 − xi,2xi,3

The transformation procedure from γ to γ′ takes poly-
nomial time and polynomial space.

Assume that polynomial minimization is easy. We
can take a formula γ in 3-CNF and translate it to γ′
as per the equations above. A valuation of γ′ would
be minimal iff the corresponding γ valuation is satis-
fiable. According to our assumption it means that it
is easy to find a satisfiable solution of a 3-CNF for-
mula, and 3-CNF satisfiability is known to be NP-
hard [Woeginger, 2003] which leads to a contradic-
tion: polynomial minimization cannot be easy.

5 Algorithm
In this section we first describe the SA algorithm, as
well as different neighborhood selection criteria. We
analyze the theoretical properties of SA and its con-
vergence behavior. We then briefly describe SAFARI
and Random Search.

5.1 Simulated Annealing
Simulated Annealing (SA) models physical anneal-
ing processes that occur when a material cools down.
When the temperature of a molten block of iron is de-
creased, the atoms’ movement decreases proportion-
ally until some solid state is reached. If the temper-
ature decreases too rapidly, atoms can get stuck in a
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non-optimal configuration and the material becomes
brittle. A too slow decrease of temperature, however,
would lengthen the cooling process unnecessarily. The
objective is to find a rate of temperature reduction that
enables the material to enter its energetically optimal
configuration, while limiting the maximum length of
the cooling process.

The physical annealing process can be transferred
into the domain of optimization algorithms. For this
an iterative approach is used which starts from an ini-
tial random state with high temperature and gradually
approaches states of lower temperature. The objec-
tive is to enter a low-energy state that has an optimal
configuration of its parameters. We use SA in order
to find a minimal diagnosis given the observation α
and the propositional logic description of a boolean
circuit. Therefore, the global optimum of the polyno-
mial, consisting of α and SD, describes the minimal
diagnosis and is a subset of higher cardinality diag-
noses that form local optima.

The starting point is formed by an initially random
position in the search-space (i.e. a random diagnosis).
From this position a neighborhood solution is calcu-
lated. If the neighborhood solution is better than the
current solution it is selected for the next iteration.
If, the neighborhood solution inferior to the current
solution, the new solution is only accepted by a cer-
tain probability p. p is calculated by the difference
between the initial and the neighborhood solution, di-
vided by the current temperature. This approach facili-
tates that contrary to Hill-climbing or gradient-descent
methods, SA can overcome local optima by "jumping"
over them (i.e. temporarily assuming a worse solu-
tion). With decreasing temperature the likelihood of
accepting an inferior solution becomes smaller. As the
likelihood for accepting inferior solutions goes against
zero, the overall solution can only become better un-
til an optimum or the maximum amount of steps is
reached.

The algorithm is presented in listing 1. The search-
space is represented as a directed acyclic graph G =
(V,E) with V being the operators and E being the
variables of the boolean expression . The initial state is
constructed through a random assignment of real val-
ues [0, 1] to all variables. All subsequent solutions are
attained by randomly increasing or decreasing a value
by 0.05 in the range [0, 1]. A neighborhood solution
is defined by either taking parent-child nodes from a
graph, or randomly selecting variables from the poly-
nomial.

Graph-based Neighborhood
Select one node v ∈ V and randomly increase or de-
crease their value by a predefined amount. Then do the
same for each child node child(v). Here we assume
that connected nodes have a higher influence on the
overall solution than disconnected nodes in the graph.
As adjacent nodes in a graph make up a local neigh-
borhood, changing their value corresponds to an over-
all neighborhood solution.

Random Neighborhood
Another approach is to randomize the neighbor selec-
tion. Therefore only the value of a predefined per-
centage r ∈ [0, 1] of randomly selected nodes v is
changed. Connections between nodes and parent-child
relations are disregarded.

Theoretical Properties
Given infinite time it has been proven that SA will con-
verge to a global optimumn [Rajasekaran, 1990]. Us-
ing SA with timing constraints, however, only guaran-
tees that one solution is found. It is not known if this
solution is a local or a global optimum. Each local
optimum is a diagnosis, while each global optimum is
a minimum cardinality diagnosis. From this follows
that the algorithm is not sound, as local optima may
contain conflicts that are not a valid diagnosis. The
notion of completeness is violated, since SA generates
exactly one solution per run, it cannot be guaranteed
that it will eventually find all valid solutions.

Convergence of the algorithm cannot be guaranteed
when using a time-constrained version of SA, as the
run might be aborted before a global optimum of the
objective function was encountered. Running the al-
gorithm time-bounded is necessary, however, because
SA has an exponential runtime dependent on the num-
ber of input parameters.

Convergence

Figure 2: Output of the SA algorithm graph-based

Figure 2 depicts the results of SA using a graph-
based neighborhood selection. It shows that the out-
put value progresses in an inverted exponential man-
ner until it converges to a certain value. At approxi-
mately 90000 steps a global optimum was found. It is
not known, however, whether this is the only optimum
(i.e. lowest energy state) or if there would be another
optimum at a later time.

5.2 Comparison Algorithms
This section introduces a random search algorithm and
SAFARI. These were compared to SA in order to de-
termine the advantages and disadvantages between the
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Algorithm 1 Simulated Annealing
function DOSIMULATEDANNEALING

current← initial()
best← current
while temp ≥ 1 do

if msteps = 0 then
T ← decreaseT ()
msteps← mstepsInit

end if
new ← NEIGHBOR(current)

accept = e
f(current)−f(new)

T

if f(new) < f(current) then
current← new
if f(new) < f(best) then

best← new
end if

else if accept > random(0, 1) then
current← new

end if
end while
return best

end function
function NEIGHBOR(state)

node← selectRandomNode(state)
child← selectRandomChild(node)
state← changeV alue(node)
if exists(child) then

state← changeV alue(child)
end if
state← changeV alue(node)
return state

end function

algorithms. Random search naively guesses new solu-
tions, while SAFARI uses a stochastic approach.

Random Search

The random search algorithm takes as an input a
graph-based representation of the canonical formula.
It executes in a loop until a maximum amount of time
has elapsed. In each iteration the algorithm takes one
node from the graph and changes the node’s value as
well as the value of all children of the node. If the
generated solution is better than the previous one it is
kept, otherwise the algorithm continues with the next
iteration. Since the random search algorithm is simply
guessing a solution we use it as a baseline to compare
against.

In Figure 3 it is evident that the random search al-
gorithm does not converge but instead oscillates be-
tween different values. This results from the algo-
rithms’ design as it continuously generates random so-
lutions. As only a small fraction of nodes are changed
in each step, the output value cannot perform large
jumps. Furthermore, as the algorithm uses no con-
vergence criterion by definition, the output value will
continue oscillating until the algorithm is stopped.

Figure 3: Output of the random search algorithm

SAFARI
SAFARI is a greedy stochastic hill climbing algorithm
for approximating the set of minimal diagnoses in a
diagnostic system. Its input consists of a diagnostic
system description given as a fault-augmented propo-
sitional logic formula and an observation. SAFARI
starts with a random diagnosis. Taking the random
diagnosis as a baseline SAFARI iteratively improves
the diagnosis by randomly “flipping” fault literals in
the propositional logic formula. This is a one-way
process so that literals that were flipped from faulty
to healthy will not be flipped back. Each outcome is
consistency checked, which results in diagnoses with
strongly monotonically decreasing cardinality. This
process is restarted N times to start from N different
random initial diagnoses. The number of “flips” and
the number of restarts N can be adjusted to optimally
cover the search space to find minimal cardinality di-
agnoses.

6 Experiment
The experiment was performed on a single Intel Xeon
CPU with 3.3 GHz and 1.5 TB RAM, running a 64-Bit
Ubuntu 14.04. As test instances the ISCAS85 bench-
mark is used.

6.1 Benchmark
We used the ISCAS85 benchmark [Brglez, 1985] as
the input to the algorithms. The ISCAS85 benchmark
consists several combinatorial circuits that can be used
to measure the performance of testing and diagnosis
algorithms. Included in the benchmark are circuits
such as decoders, multipliers, cryptography circuits,
and arithmetic logic units with the number of gates per
circuit varying between 160 and 3512.

6.2 Results
Although the propositional logic formula that is used
with SAFARI was converted into a polynomial, the re-
sults show that the algorithms specifically designed to
work with propositional logic achieve far better results

6



Run 1 Run 2 Run 3 Run 4 Run 5

Parameters

Temperature 20 20 30 10 10
Steps 10 4 20 20 5
Runtime 20 20 60 20 20
Iterations 5 5 5 50 50

SA Graph Steps completed 900 1800 95000 47000 45000
Isolation acc. 32.4 32.3 31.4 32.2 32.8

SA Random Steps completed 800 1700 85000 42000 42000
Isolation acc. 20.1 19.9 19.6 20.0 20.0

Table 2: Runs with different parameters for SA using either the graph-based neighborhood selection (SA Graph)
or a random selection of nodes (SA Random).

than traditional optimization techniques using polyno-
mials. For all algorithms a fixed runtime was defined.
Upon exceeding the time limit the by then achieved
parameters were taken as the solution.

We define the following metric to denote the qual-
ity of a solution: Isolation accuracy Mia describes
the quality of a solution given the health state H =
{Pr(f =⊥)} (Definition 7) and a fault injection φ. We
calculate the Euclidean distance between H and φ to
determine how close the output of an algorithm is to
the original fault injection [Stern et al., 2015].

Mia =

√√√√ |H|∑
i=1

(Pr(fi =⊥)− Pr(pi =⊥))2 (6)

With fi ∈ H and pi ∈ φ and Mia ∈ R. Smaller
values of Mia indicate that the calculated health state
is closer to the fault injection. From this we can see
how good the diagnosis algorithm was able to de-
termine the actual injected fault. Bigger values on
the other hand indicate that the algorithm found more
root-causes for faults than were in the fault-injection
φ, which means that false-positive diagnoses are gen-
erated.

Table 2 shows the results the two approaches to
SA. The initial temperature was chosen in order to
achieve a reasonable probability for accepting worse
states during cool-down of the annealing algorithm.
The number of steps indicates how many annealing
steps the algorithm performs until the temperature is
decreased. The number of iterations specifies how of-
ten the algorithm was started for a specific observa-
tion α and a given polynomial p. The outcome of
the SA algorithm is the average value of all iterations.
From the table it can be concluded that the more it-
erations are performed, the better the isolation accu-
racy becomes. This can be explained through statisti-
cal analysis. As the average value for determining the
accuracy becomes closer to the real value, the more
iterations are performed.

Contrary to the assumption neither implementation
of simulated annealing is able to beat SAFARI in terms
of speed or accuracy. While isolation accuracy for SA
is around 32 and 20, respectively, SAFARI achieves
an isolation accuracy of approximately 3. For these
instances Random Search achieves an accuracy of ap-

proximately 10. The low value of isolation accuracy
for Random Search can be explained through the al-
gorithms “lucky” guessing and finding a good solu-
tion given a sufficient amount of runs. For SA, we can
guarantee that it will hit a global optimum eventually.

7 Conclusion
Before MBD problems can be mapped to the D-Wave
quantum annealers or to any realization of QA, they
have to be mapped to a polynomial representation.
Since the field of MBD operates more naturally in a
propositional logic representation, a natural question
is to evaluate the performance of canonical algorithms
such as SA working directly at the polynomial repre-
sentation. The focus of our paper is to provide such
a baseline study, comparing the performance of algo-
rithms working in these two representation paradigms.
Here, we demonstrate the methodology for solving
MBD circuit diagnostics with SA under this new poly-
nomial encoding. This contribution compares SA to
state-of-the-art diagnostic solvers such as SAFARI and
discusses performance and optimality differences. We
also compare random search to SA to validate the use
of an annealing scheme. The isolation accuracy is
tested on a popular benchmark, but it was found that
the SA accuracy is far inferior to a targeted SAFARI
search. The difference in isolation accuracy between
SA and the near-optimum (i.e.SAFARI) makes us be-
lieve that QA would be a valid approach for solving
MBD problems and showing quantum speed-up.

Quantum optimization opens an entirely new area
for research in MBD. Quantum computers based on
this principle may provide some valuable insights and
may offer answer to fundamental questions in MBD,
AI, and computational complexity theory. Currently,
we are exploring whether QA, e.g., with D-Wave-
based circuit diagnostics, can exhibit quantum speed-
up for benchmarks based on combinational circuits, as
the ones studied here.
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pages 185–207. Springer, 2003.

[Wotawa, 2001] Franz Wotawa. A variant of Reiter’s
hitting-set algorithm. Information Processing Let-
ters, 79(1):45–51, 2001.

[Zhao and Ouyang, 2007] Xiangfu Zhao and Dan-
tong Ouyang. Improved algorithms for deriving all
minimal conflict sets in model-based diagnosis. In
International Conference on Intelligent Computing,
ICIC’07, pages 157–166, 2007.

9


