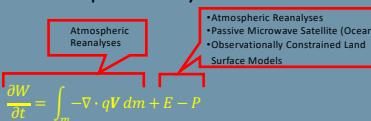


Ocean / Land Moisture Transport: Estimates from Reanalyses, Satellites and Land Surface Models

Franklin R. Robertson¹, Michael G. Bosilovich² and Jason B. Roberts¹

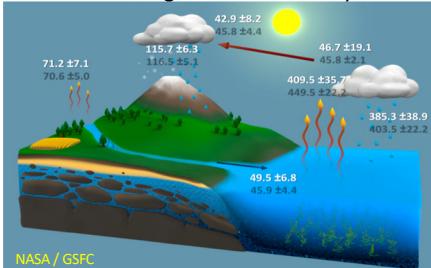
¹NASA / Marshall Space Flight Center, Earth Science Office, 320 Sparkman Dr., Huntsville, AL 35805, USA


²NASA / GSFC Global Modeling and Assimilation Office, 880 Greenbelt Rd, Greenbelt, MD 20771

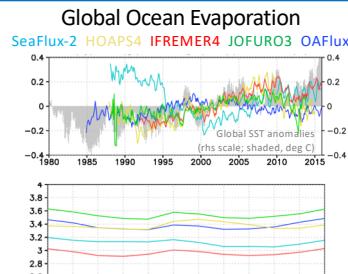
Issues & Challenge:

Vertically-integrated atmospheric transport of moisture between ocean and land is a fundamental component of the physical climate system linking the hydrologic and energy cycles of the planet as well as determining fresh water availability to the biosphere.

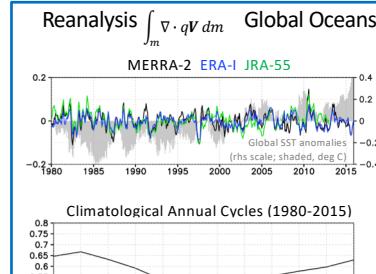
For land / ocean domains and monthly time scales, vertically-integrated moisture convergence $\int_m -\nabla \cdot qV dm \sim P-E$; thus, (i) direct estimates of this transport from reanalysis wind and moisture fields, (ii) E and P from satellite retrievals and, (iii) E and P from observationally constrained land surface models relatively independent information on land /ocean moisture exchange.


Atmospheric Moisture Budget and Complementary Data Sources

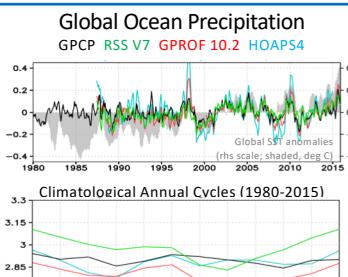
$$\int_{\text{oc}} \int_m \nabla \cdot qV dm \delta a_{\text{oc}} = \int_{\text{land}} \int_m \nabla \cdot qV dm \delta a_{\text{land}}$$

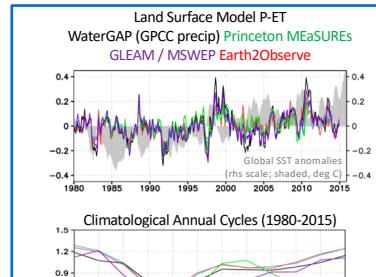

$$E_{\text{oc}} = P_{\text{oc}} + \int_{\text{area}} (P - ET)_{\text{LAND}} \delta a$$

Climatological Mean Water Cycle

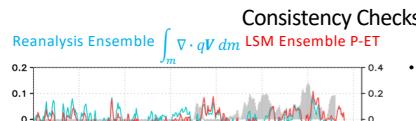


Time-Dependent Flux Variability over Ocean / Land Domains


Quantities area averaged over 60°N/S Land and Ocean Regions
(units: mm/day, fluxes; kgm⁻², climatology)

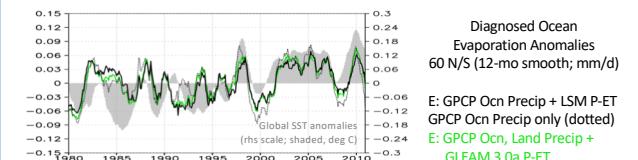

- Low-frequency behavior and trends are much greater in IFREMER4 and HOAPS4 and contrast strongly with OAFlux. JOFUR03 correlates best to reanalyses.
- SeaFlux algorithm extreme sensitivity to: (1) Earth Incidence Angle variability and (2) single sensor algorithm training data coverage.

- Systematic anomalous export of moisture from ocean to land (land to ocean) during transition to ENSO cold (warm) events. Moisture export leads global SST minimum.
- Maximum moisture export to land in late NH Winter.
- MERRA-2 climatological values appear biased high.


- Strong correlation between oceanic P and SST on ENSO time scales with more (less) P sequestered over oceans during warm (cold) events.
- GPROF10.2 and HOAPS4 likely have regime-dependent sensitivity to frozen precipitation.

- On ENSO time scales a strong anti-correlation is present (warm SSTs → P-ET) and implied reduction in transport of moisture to land. P-ET also leads global SST maximum.
- P-ET maximum is in NH winter as ET is at a minimum.

Summary Points:


(1) Reanalysis vertically-integrated moisture flux divergence estimates show strong consistency with LSM P-ET estimates, (2) ENSO warm and cold SST events provide primary interannual signal modulating land ocean moisture exchange, (3) Satellite P - E estimates over ocean exhibit significantly stronger interannual signals than either reanalyses or LSMs. Known intercalibration issues with satellite evaporation retrievals are a likely driver.

- Significant agreement exists between reanalysis export of moisture from ocean to land and land P-ET diagnosed from observationally-constrained Land Surface Models.
- Warm (cold) ENSO events retard (enhance) this export.
- Satellite retrievals of P-ET over the global oceans, while consistent in terms of interannual signals, exhibit much greater amplitudes. (HOAPS4 and IFREMER E values yield even more extreme results.
- Known systematic biases in satellite Qs-qg signals used in bulk formula retrievals are a major source of the large amplitude E-P signals.

Alternative Global Ocean Global Ocean Mean Calculation

- $E'_{\text{oc}} = P'_{\text{oc}} + \int_{\text{area}} (P - ET)'_{\text{LAND}} \delta a$ Changes in ocean evaporation anomalies are balanced by precipitation changes and transports to / from land. (Atmospheric storage is small on the scales of interest.)
- Use GPCP v2.3 precipitation (ocean, land and (P-ET)' from observationally constrained Land Surface Models (Robertson et al. 2016; GLEAM 3.0a ET, Martens et al. [2016, GMDD]).

